• Oper Neurosurg (Hagerstown) · Mar 2020

    Robot-Assisted Insular Depth Electrode Implantation Through Oblique Trajectories: 3-Dimensional Anatomical Nuances, Technique, Accuracy, and Safety.

    • Juan S Bottan, Pablo A Rubino, LauJonathan CJCDepartment of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada., Keith W MacDougall, Andrew G Parrent, Jorge G Burneo, and David A Steven.
    • Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada.
    • Oper Neurosurg (Hagerstown). 2020 Mar 1; 18 (3): 278-283.

    BackgroundThe insula is a deep cortical structure that has renewed interest in epilepsy investigation. Invasive EEG recordings of this region have been challenging. Robot-assisted stereotactic electroencephalography has improved feasibility and safety of such procedures.ObjectiveTo describe technical nuances of three-dimensional (3D) oblique trajectories for insular robot-assisted depth electrode implantation.MethodsFifty patients who underwent robot-assisted depth electrode implantation between June 2017 and December 2018 were retrospectively analyzed. Insular electrodes were implanted through oblique, orthogonal, or parasagittal trajectories. Type of trajectories, accuracy, number of contacts within insular cortex, imaging, and complication rates were analyzed. Cadaveric and computerized tomography/magnetic resonance imaging 3D reconstructions were used to visualize insular anatomy and the technical implications of oblique trajectories.ResultsForty-one patients (98 insular electrodes) were included. Thirty (73.2%) patients had unilateral insular coverage. Average insular electrodes per patient was 2.4. The mean number of contacts was 7.1 (SD ± 2.91) for all trajectories and 8.3 (SD ± 1.51) for oblique insular trajectories. The most frequently used was the oblique trajectory (85 electrodes). Mean entry point error was 1.5 mm (0.2-2.8) and target error was 2.4 mm (0.8-4.0), 2.0 mm (1.1-2.9) for anterior oblique and 2.8 mm (0.8-4.9) for posterior oblique trajectories. There were no complications related to insular electrodes.ConclusionOblique trajectories are the preferred method for insular investigation at our institution, maximizing the number of contacts within insular cortex without traversing through sulci or major CSF fissures. Robot-assisted procedures are safe and efficient. 3D understanding of the insula's unique anatomical features can help the surgeon to improve targeting of this structure.Copyright © 2019 by the Congress of Neurological Surgeons.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…