• Am J Emerg Med · Feb 2021

    Observational Study

    Derivation of a prediction model for emergency department acute kidney injury.

    • Aled O Phillips, David A Foxwell, Sara Pradhan, Soha Zouwail, and Timothy H Rainer.
    • Institute of Nephrology, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN, UK.
    • Am J Emerg Med. 2021 Feb 1; 40: 64-69.

    Background And ObjectiveQuality management of Acute Kidney Injury (AKI) is dependent on early detection, which is currently deemed to be suboptimal. The aim of this study was to identify combinations of variables associated with AKI and to derive a prediction tool for detecting patients attending the emergency department (ED) or hospital with AKI (ED-AKI).Design, Setting, Participants And MeasurementsThis retrospective observational study was conducted in the ED of a tertiary university hospital in Wales. Between April and August 2016 20,421 adult patients attended the ED of a University Hospital in Wales and had a serum creatinine measurement. Using an electronic AKI reporting system, 548 incident adult ED-AKI patients were identified and compared to a randomly selected cohort of adult non-AKI ED patients (n = 571). A prediction model for AKI was derived and subsequently internally validated using bootstrapping. The primary outcome measure was the number of patients with ED-AKI.ResultsIn 1119 subjects, 27 variables were evaluated. Four ED-AKI models were generated with C-statistics ranging from 0.800 to 0.765. The simplest and most practical multivariate model (model 3) included eight variables that could all be assessed at ED arrival. A 31-point score was derived where 0 is minimal risk of ED-AKI. The model discrimination was adequate (C-statistic 0.793) and calibration was good (Hosmer & Lomeshow test 27.4). ED-AKI could be ruled out with a score of <2.5 (sensitivity 95%). Internal validation using bootstrapping yielded an optimal Youden index of 0.49 with sensitivity of 80% and specificity of 68%.ConclusionA risk-stratification model for ED-AKI has been derived and internally validated. The discrimination of this model is objective and adequate. It requires refinement and external validation in more generalisable settings.Copyright © 2020 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.