-
- Peng Xue, Chao Tang, Qing Li, Yuexiang Li, Yu Shen, Yuqian Zhao, Jiawei Chen, Jianrong Wu, Longyu Li, Wei Wang, Yucong Li, Xiaoli Cui, Shaokai Zhang, Wenhua Zhang, Xun Zhang, Kai Ma, Yefeng Zheng, Tianyi Qian, Man Tat Alexander Ng, Zhihua Liu, Youlin Qiao, Yu Jiang, and Fanghui Zhao.
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Bmc Med. 2020 Dec 22; 18 (1): 406406.
BackgroundColposcopy diagnosis and directed biopsy are the key components in cervical cancer screening programs. However, their performance is limited by the requirement for experienced colposcopists. This study aimed to develop and validate a Colposcopic Artificial Intelligence Auxiliary Diagnostic System (CAIADS) for grading colposcopic impressions and guiding biopsies.MethodsAnonymized digital records of 19,435 patients were obtained from six hospitals across China. These records included colposcopic images, clinical information, and pathological results (gold standard). The data were randomly assigned (7:1:2) to a training and a tuning set for developing CAIADS and to a validation set for evaluating performance.ResultsThe agreement between CAIADS-graded colposcopic impressions and pathology findings was higher than that of colposcopies interpreted by colposcopists (82.2% versus 65.9%, kappa 0.750 versus 0.516, p < 0.001). For detecting pathological high-grade squamous intraepithelial lesion or worse (HSIL+), CAIADS showed higher sensitivity than the use of colposcopies interpreted by colposcopists at either biopsy threshold (low-grade or worse 90.5%, 95% CI 88.9-91.4% versus 83.5%, 81.5-85.3%; high-grade or worse 71.9%, 69.5-74.2% versus 60.4%, 57.9-62.9%; all p < 0.001), whereas the specificities were similar (low-grade or worse 51.8%, 49.8-53.8% versus 52.0%, 50.0-54.1%; high-grade or worse 93.9%, 92.9-94.9% versus 94.9%, 93.9-95.7%; all p > 0.05). The CAIADS also demonstrated a superior ability in predicting biopsy sites, with a median mean-intersection-over-union (mIoU) of 0.758.ConclusionsThe CAIADS has potential in assisting beginners and for improving the diagnostic quality of colposcopy and biopsy in the detection of cervical precancer/cancer.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.