• Chest · Jun 2021

    Identifying and characterizing a chronic cough cohort through electronic health records.

    • Michael Weiner, Paul R Dexter, Kim Heithoff, Anna R Roberts, Ziyue Liu, Ashley Griffith, Siu Hui, Jonathan Schelfhout, Peter Dicpinigaitis, Ishita Doshi, and Jessica P Weaver.
    • Regenstrief Institute, Inc., Indianapolis, IN; Indiana University, Indianapolis, IN; Center for Health Information and Communication, US Department of Veterans Affairs, Veterans Health Administration, Health Services Research and Development Service CIN 13-416, Richard L. Roudebush VA Medical Center, Indianapolis, IN. Electronic address: mw@cogit.net.
    • Chest. 2021 Jun 1; 159 (6): 2346-2355.

    BackgroundChronic cough (CC) of 8 weeks or more affects about 10% of adults and may lead to expensive treatments and reduced quality of life. Incomplete diagnostic coding complicates identifying CC in electronic health records (EHRs). Natural language processing (NLP) of EHR text could improve detection.Research QuestionCan NLP be used to identify cough in EHRs, and to characterize adults and encounters with CC?Study Design And MethodsA Midwestern EHR system identified patients aged 18 to 85 years during 2005 to 2015. NLP was used to evaluate text notes, except prescriptions and instructions, for mentions of cough. Two physicians and a biostatistician reviewed 12 sets of 50 encounters each, with iterative refinements, until the positive predictive value for cough encounters exceeded 90%. NLP, International Classification of Diseases, 10th revision, or medication was used to identify cough. Three encounters spanning 56 to 120 days defined CC. Descriptive statistics summarized patients and encounters, including referrals.ResultsOptimizing NLP required identifying and eliminating cough denials, instructions, and historical references. Of 235,457 cough encounters, 23% had a relevant diagnostic code or medication. Applying chronicity to cough encounters identified 23,371 patients (61% women) with CC. NLP alone identified 74% of these patients; diagnoses or medications alone identified 15%. The positive predictive value of NLP in the reviewed sample was 97%. Referrals for cough occurred for 3.0% of patients; pulmonary medicine was most common initially (64% of referrals).LimitationsSome patients with diagnosis codes for cough, encounters at intervals greater than 4 months, or multiple acute cough episodes may have been misclassified.InterpretationNLP successfully identified a large cohort with CC. Most patients were identified through NLP alone, rather than diagnoses or medications. NLP improved detection of patients nearly sevenfold, addressing the gap in ability to identify and characterize CC disease burden. Nearly all cases appeared to be managed in primary care. Identifying these patients is important for characterizing treatment and unmet needs.Copyright © 2020 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.