• J. Biol. Chem. · Dec 2005

    Does AMP-activated protein kinase couple inhibition of mitochondrial oxidative phosphorylation by hypoxia to calcium signaling in O2-sensing cells?

    • A Mark Evans, Kirsteen J W Mustard, Christopher N Wyatt, Chris Peers, Michelle Dipp, Prem Kumar, Nicholas P Kinnear, and D Grahame Hardie.
    • Division of Biomedical Sciences, School of Biology, Bute Building, University of St. Andrews, St. Andrews, Fife KY16 9TS, United Kingdom. ame3@st-and.ac.uk
    • J. Biol. Chem. 2005 Dec 16; 280 (50): 41504-11.

    AbstractSpecialized O2-sensing cells exhibit a particularly low threshold to regulation by O2 supply and function to maintain arterial pO2 within physiological limits. For example, hypoxic pulmonary vasoconstriction optimizes ventilation-perfusion matching in the lung, whereas carotid body excitation elicits corrective cardio-respiratory reflexes. It is generally accepted that relatively mild hypoxia inhibits mitochondrial oxidative phosphorylation in O2-sensing cells, thereby mediating, in part, cell activation. However, the mechanism by which this process couples to Ca2+ signaling mechanisms remains elusive, and investigation of previous hypotheses has generated contrary data and failed to unite the field. We propose that a rise in the cellular AMP/ATP ratio activates AMP-activated protein kinase and thereby evokes Ca2+ signals in O2-sensing cells. Co-immunoprecipitation identified three possible AMP-activated protein kinase subunit isoform combinations in pulmonary arterial myocytes, with alpha1 beta2 gamma1 predominant. Furthermore, their tissue-specific distribution suggested that the AMP-activated protein kinase-alpha1 catalytic isoform may contribute, via amplification of the metabolic signal, to the pulmonary selectivity required for hypoxic pulmonary vasoconstriction. Immunocytochemistry showed AMP-activated protein kinase-alpha1 to be located throughout the cytoplasm of pulmonary arterial myocytes. In contrast, it was targeted to the plasma membrane in carotid body glomus cells. Consistent with these observations and the effects of hypoxia, stimulation of AMP-activated protein kinase by phenformin or 5-aminoimidazole-4-carboxamide-riboside elicited discrete Ca2+ signaling mechanisms in each cell type, namely cyclic ADP-ribose-dependent Ca2+ mobilization from the sarcoplasmic reticulum via ryanodine receptors in pulmonary arterial myocytes and transmembrane Ca2+ influx into carotid body glomus cells. Thus, metabolic sensing by AMP-activated protein kinase may mediate chemotransduction by hypoxia.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…