-
- Aaron F Struck, Berk Ustun, Andres Rodriguez Ruiz, Jong Woo Lee, Suzette M LaRoche, Lawrence J Hirsch, Emily J Gilmore, Jan Vlachy, Hiba Arif Haider, Cynthia Rudin, and M Brandon Westover.
- Department of Neurology, University of Wisconsin, Madison.
- JAMA Neurol. 2017 Dec 1; 74 (12): 1419-1424.
ImportanceContinuous electroencephalography (EEG) use in critically ill patients is expanding. There is no validated method to combine risk factors and guide clinicians in assessing seizure risk.ObjectiveTo use seizure risk factors from EEG and clinical history to create a simple scoring system associated with the probability of seizures in patients with acute illness.Design, Setting, And ParticipantsWe used a prospective multicenter (Emory University Hospital, Brigham and Women's Hospital, and Yale University Hospital) database containing clinical and electrographic variables on 5427 continuous EEG sessions from eligible patients if they had continuous EEG for clinical indications, excluding epilepsy monitoring unit admissions. We created a scoring system model to estimate seizure risk in acutely ill patients undergoing continuous EEG. The model was built using a new machine learning method (RiskSLIM) that is designed to produce accurate, risk-calibrated scoring systems with a limited number of variables and small integer weights. We validated the accuracy and risk calibration of our model using cross-validation and compared its performance with models built with state-of-the-art logistic regression methods. The database was developed by the Critical Care EEG Research Consortium and used data collected over 3 years. The EEG variables were interpreted using standardized terminology by certified reviewers.ExposuresAll patients had more than 6 hours of uninterrupted EEG recordings.Main Outcomes And MeasuresThe main outcome was the average risk calibration error.ResultsThere were 5427 continuous EEGs performed on 4772 participants (2868 men, 49.9%; median age, 61 years) performed at 3 institutions, without further demographic stratification. Our final model, 2HELPS2B, had an area under the curve of 0.819 and average calibration error of 2.7% (95% CI, 2.0%-3.6%). It included 6 variables with the following point assignments: (1) brief (ictal) rhythmic discharges (B[I]RDs) (2 points); (2) presence of lateralized periodic discharges, lateralized rhythmic delta activity, or bilateral independent periodic discharges (1 point); (3) prior seizure (1 point); (4) sporadic epileptiform discharges (1 point); (5) frequency greater than 2.0 Hz for any periodic or rhythmic pattern (1 point); and (6) presence of "plus" features (superimposed, rhythmic, sharp, or fast activity) (1 point). The probable seizure risk of each score was 5% for a score of 0, 12% for a score of 1, 27% for a score of 2, 50% for a score of 3, 73% for a score of 4, 88% for a score of 5, and greater than 95% for a score of 6 or 7.Conclusions And RelevanceThe 2HELPS2B model is a quick accurate tool to aid clinical judgment of the risk of seizures in critically ill patients.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.