• Am. J. Obstet. Gynecol. · Jun 2020

    Prediction of vaginal birth after cesarean deliveries using machine learning.

    • Michal Lipschuetz, Joshua Guedalia, Amihai Rottenstreich, Michal Novoselsky Persky, Sarah M Cohen, Doron Kabiri, Gabriel Levin, Simcha Yagel, Ron Unger, and Yishai Sompolinsky.
    • The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel; Obstetrics & Gynecology Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
    • Am. J. Obstet. Gynecol. 2020 Jun 1; 222 (6): 613.e1-613.e12.

    BackgroundEfforts to reduce cesarean delivery rates to 12-15% have been undertaken worldwide. Special focus has been directed towards parturients who undergo a trial of labor after cesarean delivery to reduce the burden of repeated cesarean deliveries. Complication rates are lowest when a vaginal birth is achieved and highest when an unplanned cesarean delivery is performed, which emphasizes the need to assess, in advance, the likelihood of a successful vaginal birth after cesarean delivery. Vaginal birth after cesarean delivery calculators have been developed in different populations; however, some limitations to their implementation into clinical practice have been described. Machine-learning methods enable investigation of large-scale datasets with input combinations that traditional statistical analysis tools have difficulty processing.ObjectiveThe aim of this study was to evaluate the feasibility of using machine-learning methods to predict a successful vaginal birth after cesarean delivery.Study DesignThe electronic medical records of singleton, term labors during a 12-year period in a tertiary referral center were analyzed. With the use of gradient boosting, models that incorporated multiple maternal and fetal features were created to predict successful vaginal birth in parturients who undergo a trial of labor after cesarean delivery. One model was created to provide a personalized risk score for vaginal birth after cesarean delivery with the use of features that are available as early as the first antenatal visit; a second model was created that reassesses this score after features are added that are available only in proximity to delivery.ResultsA cohort of 9888 parturients with 1 previous cesarean delivery was identified, of which 75.6% of parturients (n=7473) attempted a trial of labor, with a success rate of 88%. A machine-learning-based model to predict when vaginal delivery would be successful was developed. When features that are available at the first antenatal visit are used, the model showed a receiver operating characteristic curve with area under the curve of 0.745 (95% confidence interval, 0.728-0.762) that increased to 0.793 (95% confidence interval, 0.778-0.808) when features that are available in proximity to the delivery process were added. Additionally, for the later model, a risk stratification tool was built to allocate parturients into low-, medium-, and high-risk groups for failed trial of labor after cesarean delivery. The low- and medium-risk groups (42.4% and 25.6% of parturients, respectively) showed a success rate of 97.3% and 90.9%, respectively. The high-risk group (32.1%) had a vaginal delivery success rate of 73.3%. Application of the model to a cohort of parturients who elected a repeat cesarean delivery (n=2145) demonstrated that 31% of these parturients would have been allocated to the low- and medium-risk groups had a trial of labor been attempted.ConclusionTrial of labor after cesarean delivery is safe for most parturients. Success rates are high, even in a population with high rates of trial of labor after cesarean delivery. Application of a machine-learning algorithm to assign a personalized risk score for a successful vaginal birth after cesarean delivery may help in decision-making and contribute to a reduction in cesarean delivery rates. Parturient allocation to risk groups may help delivery process management.Copyright © 2020 Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.