-
Diabetes Obes Metab · Dec 2019
Observational StudyPredicting short- and long-term glycated haemoglobin response after insulin initiation in patients with type 2 diabetes mellitus using machine-learning algorithms.
- Sunil B Nagaraj, Grigory Sidorenkov, van Boven Job F M JFM Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands., and Petra Denig.
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
- Diabetes Obes Metab. 2019 Dec 1; 21 (12): 2704-2711.
AimTo assess the potential of supervised machine-learning techniques to identify clinical variables for predicting short-term and long-term glycated haemoglobin (HbA1c) response after insulin treatment initiation in patients with type 2 diabetes mellitus (T2DM).Materials And MethodsWe included patients with T2DM from the Groningen Initiative to Analyse Type 2 diabetes Treatment (GIANTT) database who started insulin treatment between 2007 and 2013 and had a minimum follow-up of 2 years. Short- and long-term responses at 6 (±2) and 24 (±2) months after insulin initiation, respectively, were assessed. Patients were defined as good responders if they had a decrease in HbA1c ≥ 5 mmol/mol or reached the recommended level of HbA1c ≤ 53 mmol/mol. Twenty-four baseline clinical variables were used for the analysis and an elastic net regularization technique was used for variable selection. The performance of three traditional machine-learning algorithms was compared for the prediction of short- and long-term responses and the area under the receiver-operating characteristic curve (AUC) was used to assess the performance of the prediction models.ResultsThe elastic net regularization-based generalized linear model, which included baseline HbA1c and estimated glomerular filtration rate, correctly classified short- and long-term HbA1c response after treatment initiation, with AUCs of 0.80 (95% CI 0.78-0.83) and 0.81 (95% CI 0.79-0.84), respectively, and outperformed the other machine-learning algorithms. Using baseline HbA1c alone, an AUC = 0.71 (95% CI 0.65-0.73) and 0.72 (95% CI 0.66-0.75) was obtained for predicting short-term and long-term response, respectively.ConclusionsMachine-learning algorithm performed well in the prediction of an individual's short-term and long-term HbA1c response using baseline clinical variables.© 2019 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.