• Acad Emerg Med · Feb 2021

    Derivation With Internal Validation of a Multivariable Predictive Model to Predict COVID-19 Test Results in Emergency Department Patients.

    • Samuel A McDonald, Richard J Medford, Mujeeb A Basit, Deborah B Diercks, and D Mark Courtney.
    • From the Department of Emergency Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
    • Acad Emerg Med. 2021 Feb 1; 28 (2): 206-214.

    ObjectivesThe COVID-19 pandemic has placed acute care providers in demanding situations in predicting disease given the clinical variability, desire to cohort patients, and high variance in testing availability. An approach to stratifying patients by likelihood of disease based on rapidly available emergency department (ED) clinical data would offer significant operational and clinical value. The purpose of this study was to develop and internally validate a predictive model to aid in the discrimination of patients undergoing investigation for COVID-19.MethodsAll patients greater than 18 years presenting to a single academic ED who were tested for COVID-19 during this index ED evaluation were included. Outcome was defined as the result of COVID-19 polymerase chain reaction (PCR) testing during the index visit or any positive result within the following 7 days. Variables included chest radiograph interpretation, disease-specific screening questions, and laboratory data. Three models were developed with a split-sample approach to predict outcome of the PCR test utilizing logistic regression, random forest, and gradient-boosted decision tree methods. Model discrimination was evaluated comparing area under the receiver operator curve (AUC) and point statistics at a predefined threshold.ResultsA total of 1,026 patients were included in the study collected between March and April 2020. Overall, there was disease prevalence of 9.6% in the population under study during this time frame. The logistic regression model was found to have an AUC of 0.89 (95% confidence interval [CI] = 0.84 to 0.94) when including four features: exposure history, temperature, white blood cell count (WBC), and chest radiograph result. Random forest method resulted in AUC of 0.86 (95% CI = 0.79 to 0.92) and gradient boosting had an AUC of 0.85 (95% CI = 0.79 to 0.91). With a consistently held negative predictive value, the logistic regression model had a positive predictive value of 0.29 (0.2-0.39) compared to 0.2 (0.14-0.28) for random forest and 0.22 (0.15-0.3) for the gradient-boosted method.ConclusionThe derived predictive models offer good discriminating capacity for COVID-19 disease and provide interpretable and usable methods for those providers caring for these patients at the important crossroads of the community and the health system. We found utilization of the logistic regression model utilizing exposure history, temperature, WBC, and chest X-ray result had the greatest discriminatory capacity with the most interpretable model. Integrating a predictive model-based approach to COVID-19 testing decisions and patient care pathways and locations could add efficiency and accuracy to decrease uncertainty.© 2020 by the Society for Academic Emergency Medicine.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.