• Pharmacol Res Perspect · Jul 2018

    Randomized Controlled Trial

    Enantioselective pharmacokinetics of tramadol and its three main metabolites; impact of CYP2D6, CYP2B6, and CYP3A4 genotype.

    • Pernilla Haage, Robert Kronstrand, Martin Josefsson, Simona Calistri, van Schaik Ron H N RHN Department of Clinical Chemistry Erasmus University Medical Center Rotterdam The Netherlands., Henrik Green, and Fredrik C Kugelberg.
    • Department of Forensic Genetics and Forensic Toxicology National Board of Forensic Medicine Linköping Sweden.
    • Pharmacol Res Perspect. 2018 Jul 1; 6 (4): e00419.

    AbstractTramadol is a complex drug, being metabolized by polymorphic enzymes and administered as a racemate with the (+)- and (-)-enantiomers of the parent compound and metabolites showing different pharmacological effects. The study aimed to simultaneously determine the enantiomer concentrations of tramadol, O-desmethyltramadol, N-desmethyltramadol, and N,O-didesmethyltramadol following a single dose, and elucidate if enantioselective pharmacokinetics is associated with the time following drug intake and if interindividual differences may be genetically explained. Nineteen healthy volunteers were orally administered either 50 or 100 mg tramadol, whereupon blood samples were drawn at 17 occasions. Enantiomer concentrations in whole blood were measured by LC-MS/MS and the CYP2D6,CYP2B6 and CYP3A4 genotype were determined, using the xTAG CYP2D6 Kit, pyrosequencing and real-time PCR, respectively. A positive correlation between the (+)/(-)-enantiomer ratio and time following drug administration was shown for all four enantiomer pairs. The largest increase in enantiomer ratio was observed for N-desmethyltramadol in CYP2D6 extensive and intermediate metabolizers, rising from about two to almost seven during 24 hours following drug intake. CYP2D6 poor metabolizers showed metabolic profiles markedly different from the ones of intermediate and extensive metabolizers, with large area under the concentration curves (AUCs) of the N-desmethyltramadol enantiomers and low corresponding values of the O-desmethyltramadol and N,O-didesmethyltramadol enantiomers, especially of the (+)-enantiomers. Homozygosity of CYP2B6 *5 and *6 indicated a reduced enzyme function, although further studies are required to confirm it. In conclusion, the increase in enantiomer ratios over time might possibly be used to distinguish a recent tramadol intake from a past one. It also implies that, even though (+)-O-desmethyltramadol is regarded the enantiomer most potent in causing adverse effects, one should not investigate the (+)/(-)-enantiomer ratio of O-desmethyltramadol in relation to side effects without consideration for the time that has passed since drug intake.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.