• Journal of neurosurgery · Jun 2014

    Multicenter Study

    Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data.

    • Bart Depreitere, Fabian Güiza, Greet Van den Berghe, Martin U Schuhmann, Gottlieb Maier, Ian Piper, and Geert Meyfroidt.
    • Neurosurgery and.
    • J. Neurosurg.. 2014 Jun 1;120(6):1451-7.

    ObjectIn severe traumatic brain injury, a universal target for cerebral perfusion pressure (CPP) has been abandoned. Attempts to identify a dynamic CPP target based on the patient's cerebrovascular autoregulatory capacity have been promising so far. Bedside monitoring of pressure autoregulatory capacity has become possible by a number of methods, Czosnyka's pressure reactivity index (PRx) being the most frequently used. The PRx is calculated as the moving correlation coefficient between 40 consecutive 5-second averages of intracranial pressure (ICP) and mean arterial blood pressure (MABP) values. Plotting PRx against CPP produces a U-shaped curve in roughly two-thirds of monitoring time, with the bottom of this curve representing a CPP range corresponding with optimal autoregulatory capacity (CPPopt). In retrospective series, keeping CPP close to CPPopt corresponded with better outcomes. Monitoring of PRx requires high-frequency signal processing. The aim of the present study is to investigate how the processing of the information on cerebrovascular pressure reactivity that can be obtained from routine minute-by-minute ICP and MABP data can be enhanced to enable CPPopt recommendations that do not differ from those obtained by the PRx method, show the same associations with outcome, and can be generated in more than two-thirds of monitoring time.MethodsThe low-frequency autoregulation index (LAx) was defined as the moving minute-by-minute ICP/MABP correlation coefficient calculated over time intervals varying from 3 to 120 minutes. The CPPopt calculation was based on LAx-CPP plots and done for time windows between 1 and 24 hours and for each LAx type. The resulting matrix of CPPopts were then averaged in a weighted manner, with the weight based on the goodness of fit of a U-shape and the lower value of the LAx corresponding to the U-bottom, to result in a final CPPopt recommendation. The association between actual CPP/CPPopt and outcome was assessed in the multicenter Brain Monitoring with Information Technology Research Group (BrainIT) database (n = 180). In the Leuven-Tübingen database (60-Hz waveform data, n = 21), LAx- and PRx-based CPPopts were compared.ResultsIn the BrainIT database, CPPopt recommendations were generated in 95% of monitoring time. Actual CPP being close to LAx-based CPPopt was associated with increased survival. In a multivariate model using the Corticosteroid Randomization After Significant Head Injury (CRASH) model as covariates, the average absolute difference between actual CPP and CPPopt was independently associated with increased mortality. In the high-frequency data set no significant difference was observed between PRx-based and LAx-based CPPopts. The new method issued a CPPopt recommendation in 97% of monitoring time, as opposed to 44% for PRx-based CPPopt.ConclusionsMinute-by-minute ICP/MABP data contain relevant information for autoregulation monitoring. In this study, the authors' new method based on minute-by-minute data resolution allowed for CPPopt calculation in nearly the entire monitoring time. This will facilitate the use of pressure reactivity monitoring in all ICUs.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.