• Spine · Jul 2015

    A Biomechanical Assessment of Kyphoplasty as a Stand-Alone Treatment in a Human Cadaveric Burst Fracture Model.

    • Edwin King Yat Wong, Cari Marisa Whyne, Devin Singh, and Michael Ford.
    • *Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, Ontario, Canada †Department of Surgery, IBBME and IMS, University of Toronto, Toronto, Ontario, Canada; and ‡Division of Orthopaedic Surgery, Sunnybrook Health Sciences Centre, and Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
    • Spine. 2015 Jul 15;40(14):E808-13.

    Study DesignIn vitro biomechanics study.ObjectiveTo determine whether kyphoplasty is an adequate stand-alone treatment for restoring biomechanical stability in the spine after experiencing high-energy vertebral burst fractures.Summary Of Background DataKyphoplasty in the treatment of high-energy vertebral burst fractures has been shown by previous studies to significantly improve stiffness when used in conjunction with pedicle screw instrumentation. However, it is not known whether kyphoplasty as a stand-alone treatment may be an acceptable method for restoring biomechanical stability of a spinal motion segment post-burst fracture while allowing flexibility of the motion segment through the intervertebral discs.MethodsYoung cadaveric spines (15-50 yr old; 3 males and 1 female; bone mineral density 0.27-0.31 gHA/cm) were divided into motion segments consisting of 3 intact vertebrae separated by 2 intervertebral discs (T11-L1 and L2-L4). Mechanical testing in axial, flexion/extension, lateral bending, and torsion was performed on each specimen in an intact state, after an experimentally simulated burst fracture and postkyphoplasty. Computed tomography was used to confirm the burst fractures and quantify cement placement.ResultsBetween the intact and burst-fractured states significant decreases in stiffness were seen in all loading modes (63%-69%). Burst fracture increased the average angulation of the vertebral endplates 147% and decreased vertebral body height by an average of 40%. Postkyphoplasty, only small recoveries in stiffness were seen in axial, flexion/extension, and lateral bending (4%-12%), with no improvement in torsional stiffness. Large angular deformations (85%) and height loss (31%) remained postkyphoplasty as compared with the intact state.ConclusionLack of overall improvement in biomechanical stiffness indicates failure of kyphoplasty to sufficiently restore stability as a stand-alone treatment after high-energy burst fracture. The lack of stability can be explained by an inability to biomechanically repair the compromised intervertebral discs.Level Of Evidence3.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.