-
- Robert M Havey, Jeremy Goodsitt, Saeed Khayatzadeh, Muturi Muriuki, Tejaswy Potluri, Leonard I Voronov, Laurie M Lomasney, and Avinash G Patwardhan.
- *Musculoskeletal Biomechanics Laboratory, Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL; and Departments of †Orthopaedic Surgery and Rehabilitation and ‡Radiology, Loyola University Medical Center, Maywood, IL.
- Spine. 2015 Jul 15; 40 (14): E814-22.
Study DesignCadaveric study to accurately measure lumbar neuroforaminal area and height throughout the flexion-extension range of motion (ROM).ObjectiveCreate a new computed tomography (CT)-based specimen-specific model technique to provide insight on the effects of kinematics on lumbar neuroforamen morphology during flexion-extension ROM.Summary Of Background DataNerve root compression is a key factor in symptomatic progression of degenerative disc disease because these changes directly affect neuroforaminal area. Traditional techniques to evaluate the neuroforamen suffer from poor accuracy, have inherent limitations, and fail to provide data throughout the ROM.MethodsSix cadaveric specimens (L1-sacrum) were instrumented with radiopaque spheres and CT scanned. 3-Dimensional reconstructions were made of each vertebra and the sphere locations determined. During kinematic testing, the spheres were located in relation to optoelectronic targets attached to each vertebra. The result was a 3-dimensional representation of the specimen's CT reconstruction moving in response to experimental data. Bony contours of the L2-L3 and L4-L5 neuroforamen were digitized producing continuous neuroforaminal area and height data throughout the ROM.ResultsNeuroforaminal area and height linearly increased in flexion and decreased in extension. There was significant correlation between flexion-extension motion and percent change in area (L2-L3: 3.1%/deg, R = 0.94, L4-L5: 2.5%/deg, R = 0.90) and neuroforaminal height (L2-L3: 2.1%/deg, R = 0.95, L4-L5: 1.6%/deg, R = 0.93). Regression analysis showed that the ratio between neuroforaminal height and area is at least 1:1.5 such that a 100% increase in height is associated with an area increase of more than 150%.ConclusionThis is the first study to measure lumbar neuroforaminal area and height throughout flexion-extension ROM. The CT-based specimen-specific model technique can accurately evaluate the effect of kinematics on morphological features of the spine. The demonstrated increase in neuroforaminal dimension in flexion is consistent with treatment modalities used in clinical therapies to relieve radicular symptoms.Level Of EvidenceN/A.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.