• Langenbecks Arch Surg · Aug 2001

    Randomized Controlled Trial Comparative Study Clinical Trial

    Changes in p(i)CO(2) reflect splanchnic mucosal ischaemia more reliably than changes in pH(i) during haemorrhagic shock.

    • F G Meisner, O P Habler, G I Kemming, M S Kleen, A Pape, and K Messmer.
    • Institute for Surgical Research, Clinic of the Ludwig-Maximilians-University Munich, Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany. Franz.Meisner@medizin.uni-ulm.de
    • Langenbecks Arch Surg. 2001 Aug 1; 386 (5): 333-8.

    BackgroundGastric tonometry is intended to reveal alterations in splanchnic perfusion and oxygenation. Based on the tonometric measurement of gastric mucosal partial pressure of carbon dioxide (pCO(2)) and the simultaneous determination of arterial blood gas parameters (bicarbonate concentration [HCO(3-)], pH and pCO(2)), several parameters can be calculated.AimsTo identify the most suitable tonometric parameter [gastric mucosal pH (pH(i)), intramucosal pCO(2) (p(i)CO(2)), the difference between tonometric and arterial pCO(2) concentrations (pCO(2) gap), [H+] gap] that reliably reflects gastric hypoperfusion and hypoxia during severe haemorrhagic shock.DesignRandomised, controlled experimental study.MethodsAn artificial stenosis of the left anterior descending coronary artery (LAD) was induced. Subsequently, the animals were haemorrhaged to a mean arterial pressure of 45 mmHg, which was maintained for 60 min.Measurements And Main ResultsTonometric measurements were performed in 17 land-race pigs before and after induction of LAD stenosis and after haemorrhagic shock. P values obtained using the Wilcoxon signed-rank testing were used to compare the level of significance for the tonometric parameters and the corresponding arterial blood gas values [arterial pCO2 (p(a)CO(2)), [HCO(3-)], arterial pH (pH(a))]. While induction of critical coronary stenosis did not provoke any changes, all parameters changed significantly during haemorrhagic shock. The lowest P value was found for pH(i) (P=0.00013) followed by [H+ gap] (P=0.0005). P values higher by a factor of ten were found for pCO(2) gap (P=0.00119) and were highest for p(i)CO(2) (P=0.00562). P values of the corresponding arterial blood gas parameters were lower by a factor of ten than the P value of p(i)CO(2).ConclusionpH(i), pCO(2) gap and [H+] gap are considerably influenced by changes of systemic arterial blood gas values. This is demonstrated by lower P values of the corresponding arterial blood gas values in comparison with p(i)CO(2). Therefore pH(i), pCO(2) gap and [H+] gap seem to indicate more likely systemic changes, whereas p(i)CO(2) appears to reflect disturbances of regional gastric tissue perfusion and oxygenation more reliably than any other derived tonometric parameter.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.