-
- Andrea L Pallante, Albert C Chen, Scott T Ball, David Amiel, Koichi Masuda, Robert L Sah, and William D Bugbee.
- Department of Bioengineering, University of California–San Diego, La Jolla, California, USA.
- Am J Sports Med. 2012 Aug 1; 40 (8): 1814-23.
BackgroundCurrently, osteochondral allografts (OCA) are typically used after 4°C storage for prolonged durations (15-43 days), which compromises chondrocyte viability, especially at the articular surface. The long-term in vivo performance of these fresh-stored allografts, in association with variable cellularity, is unknown.PurposeTo determine the effect of 4°C storage duration (14, 28 days) versus the best (fresh) and worst (frozen) conditions of chondrocyte viability on structure, composition, and function of cartilage in the goat and the association of retrieved chondrocyte cellularity with those tissue properties.Study DesignControlled laboratory study.MethodsThe effect of allograft storage on in vivo repair outcomes was determined for OCA transplanted into 15 recipient goats and analyzed at 12 months. Repair outcomes were assessed by examining cartilage structure (gross, histopathology), composition (cellularity by depth, matrix fixed charge), and biomechanical function (stiffness). Relationships between cellularity and structural scores, matrix fixed charge, and stiffness were assessed by linear regression.ResultsRepair outcomes in 4°C-stored OCA were similar after 14 and 28 days of storage, and both were inferior to fresh OCA and were accompanied by diminished cellularity at the surface, matrix fixed charge, and histopathological structure. Overall, cellularity by depth and matrix fixed charge in cartilage of fresh OCA were similar to nonoperated controls. However, cellularity at the articular surface and matrix fixed charge in 4°C-stored OCA were lower than fresh, by ~55% (95% confidence interval [CI], 32%-76%) and ~20% (CI, 9%-30%), respectively. In frozen OCA, cellularity and matrix fixed charge were lower than 4°C-stored OCA, by ~93% (CI, 88%-99%) and ~22% (CI, 10%-35%), respectively. Cellularity correlated negatively with cartilage health indices, including structural scores, and positively with matrix fixed charge and stiffness.ConclusionReduced cellularity at the articular surface, resulting from 4°C storage, was associated with variable long-term outcomes versus consistently good repair by fresh allografts. Cellularity at the articular surface was an important index of biological performance.Clinical RelevanceNormal chondrocyte density in vivo, especially in the superficial region of cartilage, is important for maintaining long-term cartilage function and matrix content. In human cartilage, containing cells at ~3 to 5 times lower density than goat, repair outcomes may be related to absolute minimum number of cells rather than density.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.