• Spine · Aug 2015

    Low Back Pain: A Biomechanical Rationale Based on "Patterns" of Disc Degeneration.

    • Gregory A Von Forell, Trevor K Stephens, Dino Samartzis, and Anton E Bowden.
    • *Department of Mechanical Engineering, Brigham Young University, Provo, UT †Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China.
    • Spine. 2015 Aug 1; 40 (15): 1165-72.

    Study DesignA nonlinear finite element study of a lumbar spine with different "patterns" of multilevel intervertebral disc degeneration.ObjectiveTo determine how different patterns of multilevel disc degeneration influence the biomechanical behavior of the lumbar spine.Summary Of Background DataBecause of the complex etiology of low back pain, it is often difficult to identify the specific factors that contribute to the symptoms of a particular patient. Disc degeneration is associated with the development of low back pain, but its presence is not always synonymous with symptoms. However, studies have suggested that "patterns" of disc degeneration may provide insight into such pain generation rather than the overall presence of degenerative changes. Specifically, individuals with contiguous multilevel disc degeneration have been shown to exhibit higher presence and severity of low back pain than patients with skipped-level disc degeneration (i.e., healthy discs located in between degenerated discs).MethodsIn this study, the biomechanical differences between these patterns were analyzed using a nonlinear finite element model of the lumbar spine. Thirteen separate "patterns" of disc degeneration were evaluated using the model and simulated under normal physiological loading conditions in each of the primary modes of spinal motion.ResultsThe results showed that stresses and forces of the surrounding ligaments, facets, and pedicles at certain vertebral levels of the spine were generally lower in skipped-level disc degeneration cases than in the contiguous multilevel disc degenerations cases even when the skipped level contained more degenerated discs.ConclusionTo our knowledge, this is the first study to illustrate the biomechanics of specific patterns of disc degeneration of the lumbar spine. Using a multilevel disc degeneration model, our study provides insights as to why various patterns of disc degeneration throughout the lumbar spine may affect motion and soft tissue structures as well that may have bearing in the clinical pathway of pain generation.Level Of EvidenceN/A.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.