• Forensic Sci. Int. · Jul 2019

    Evaluation of a lateral flow immunoassay for the detection of the synthetic opioid fentanyl.

    • Daniel J Angelini, Tracey D Biggs, Michele N Maughan, Michael G Feasel, Edward Sisco, and Jennifer W Sekowski.
    • U.S. Army, Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD, USA. Electronic address: daniel.j.angelini2.civ@mail.mil.
    • Forensic Sci. Int. 2019 Jul 1; 300: 75-81.

    AbstractIn 2017, 47,600 overdose deaths were reported to be associated with the abuse of opioids, including prescription painkillers (e.g. oxycodone), opiates (e.g. heroin), or synthetic opioids (e.g. fentanyl) within the United States. The recent spike in the presence of synthetic opioids in lots of heroin distributed on the street present specific and significant challenges to law enforcement. Synthetic opioids are extremely toxic substances, which can easily be inhaled. This type of exposure can lead to accidental overdoses by law enforcement and other first responders answering calls involving illicit drugs containing these substances. Due to this extreme toxicity, it is important for these individuals to have tools that can be easily deployed for accurate presumptive field tests. Currently, there are only a limited number of presumptive tests available for fentanyl detection. In this study, we addressed this technology gap by evaluating newly developed lateral flow immunoassays (LFIs) designed for the detection of fentanyl and its derivatives. These LFIs were evaluated for effectiveness in different biofluid matrices, following an in vivo exposure, cross-reactivity with fentanyl analogs, and in case samples. This study demonstrates that LFIs have the potential to be used by law enforcement for the detection of synthetic opioids.Published by Elsevier B.V.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…