-
Am. J. Physiol. Renal Physiol. · Dec 2019
Analysis of the critical determinants of renal medullary oxygenation.
- Chang-Joon Lee, Bruce S Gardiner, Roger G Evans, and David W Smith.
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia.
- Am. J. Physiol. Renal Physiol. 2019 Dec 1; 317 (6): F1483-F1502.
AbstractWe have previously developed a three-dimensional computational model of oxygen transport in the renal medulla. In the present study, we used this model to quantify the sensitivity of renal medullary oxygenation to four of its major known determinants: medullary blood flow (MBF), medullary oxygen consumption rate (V̇o2,M), hemoglobin (Hb) concentration in the blood, and renal perfusion pressure. We also examined medullary oxygenation under special conditions of hydropenia, extracellular fluid volume expansion by infusion of isotonic saline, and hemodilution during cardiopulmonary bypass. Under baseline (normal) conditions, the average medullary tissue Po2 predicted for the whole renal medulla was ~30 mmHg. The periphery of the interbundle region in the outer medulla was identified as the most hypoxic region in the renal medulla, which demonstrates that the model prediction is qualitatively accurate. Medullary oxygenation was most sensitive to changes in renal perfusion pressure followed by Hb, MBF, and V̇o2,M, in that order. The medullary oxygenation also became sensitized by prohypoxic changes in other parameters, leading to a greater fall in medullary tissue Po2 when multiple parameters changed simultaneously. Hydropenia did not induce a significant change in medullary oxygenation compared with the baseline state, while volume expansion resulted in a large increase in inner medulla tissue Po2 (by ~15 mmHg). Under conditions of cardiopulmonary bypass, the renal medulla became severely hypoxic, due to hemodilution, with one-third of the outer stripe of outer medulla tissue having a Po2 of <5 mmHg.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.