• Neurosurgery · Nov 2015

    Neural Placode Tissue Derived From Myelomeningocele Repair Serves as a Viable Source of Oligodendrocyte Progenitor Cells.

    • Siddhartha S Mitra, Abdullah H Feroze, Sharareh Gholamin, Chase Richard, Rogelio Esparza, Michael Zhang, Tej D Azad, Bahaudeen Alrfaei, Suzana A Kahn, Gregor Hutter, Raphael Guzman, Graham H Creasey, Giles W Plant, Irving L Weissman, Michael S B Edwards, and Samuel Cheshier.
    • ‡Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; §Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, California; ¶Department of Neurosurgery, VA Palo Alto Health Care System, Stanford University School of Medicine, Palo Alto, California; ∥Department of Neurological Surgery, University of Washington, Seattle, Washington.
    • Neurosurgery. 2015 Nov 1; 77 (5): 794-802; discussion 802.

    BackgroundThe presence, characteristics, and potential clinical relevance of neural progenitor populations within the neural placodes of myelomeningocele patients remain to be studied. Neural stem cells are known to reside adjacent to ependyma-lined surfaces along the central nervous system axis.ObjectiveGiven such neuroanatomic correlation and regenerative capacity in fetal development, we assessed myelomeningocele-derived neural placode tissue as a potentially novel source of neural stem and progenitor cells.MethodsNonfunctional neural placode tissue was harvested from infants during the surgical repair of myelomeningocele and subsequently further analyzed by in vitro studies, flow cytometry, and immunofluorescence. To assess lineage potential, neural placode-derived neurospheres were subjected to differential media conditions. Through assessment of platelet-derived growth factor receptor α (PDGFRα) and CD15 cell marker expression, Sox2+Olig2+ putative oligodendrocyte progenitor cells were successfully isolated.ResultsPDGFRαCD15 cell populations demonstrated the highest rate of self-renewal capacity and multipotency of cell progeny. Immunofluorescence of neural placode-derived neurospheres demonstrated preferential expression of the oligodendrocyte progenitor marker, CNPase, whereas differentiation to neurons and astrocytes was also noted, albeit to a limited degree.ConclusionNeural placode tissue contains multipotent progenitors that are preferentially biased toward oligodendrocyte progenitor cell differentiation and presents a novel source of such cells for use in the treatment of a variety of pediatric and adult neurological disease, including spinal cord injury, multiple sclerosis, and metabolic leukoencephalopathies.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…