• World J. Gastroenterol. · Feb 2019

    Review

    Artificial intelligence in medical imaging of the liver.

    • Li-Qiang Zhou, Jia-Yu Wang, Song-Yuan Yu, Ge-Ge Wu, Qi Wei, You-Bin Deng, Xing-Long Wu, Xin-Wu Cui, and Christoph F Dietrich.
    • Sino-German Tongji-Caritas Research Center of Ultrasound in Medicine, Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
    • World J. Gastroenterol. 2019 Feb 14; 25 (6): 672-682.

    AbstractArtificial intelligence (AI), particularly deep learning algorithms, is gaining extensive attention for its excellent performance in image-recognition tasks. They can automatically make a quantitative assessment of complex medical image characteristics and achieve an increased accuracy for diagnosis with higher efficiency. AI is widely used and getting increasingly popular in the medical imaging of the liver, including radiology, ultrasound, and nuclear medicine. AI can assist physicians to make more accurate and reproductive imaging diagnosis and also reduce the physicians' workload. This article illustrates basic technical knowledge about AI, including traditional machine learning and deep learning algorithms, especially convolutional neural networks, and their clinical application in the medical imaging of liver diseases, such as detecting and evaluating focal liver lesions, facilitating treatment, and predicting liver treatment response. We conclude that machine-assisted medical services will be a promising solution for future liver medical care. Lastly, we discuss the challenges and future directions of clinical application of deep learning techniques.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.