• Isr Med Assoc J · Dec 2020

    Catheter Injectable Hydrogel-Based Scaffolds for Tissue Engineering Applications in lung disease.

    • Tiberiu R Shulimzon, Shir Giladi, and Meital Zilberman.
    • Interventional Pulmonology Unit, Pulmonary Institute, Sheba Medical Center, Tel Hashomer, Israel.
    • Isr Med Assoc J. 2020 Dec 1; 22 (12): 736-740.

    BackgroundChronic lung diseases, especially emphysema and pulmonary fibrosis, are the third leading cause of mortality worldwide. Their treatment includes symptom alleviation, slowing of the disease progression, and ultimately organ transplant. Regenerative medicine represents an attractive alternative.ObjectivesTo develop a dual approach to lung therapy by engineering a platform dedicated to both remodeling pulmonary architecture (bronchoscopic lung volume reduction) and regeneration of lost respiratory tissue (scaffold).MethodsThe authors developed a hydrogel scaffold based on the natural polymers gelatin and alginate. The unique physical properties allow its injection through long catheters that pass through the working channel of a bronchoscope. The scaffold might reach the diseased area; thus, serving a dual purpose: remodeling the lung architecture as a lung volume reduction material and developing a platform for tissue regeneration to allow for cell or organoid implant.ResultsThe authors' novel hydrogel scaffold can be injected through long catheters, exhibiting the physical and mechanical properties necessary for the dual treatment objectives. Its biocompatibility was analyzed on human fibroblasts and mouse mesenchymal cells. Cells injected with the scaffold through long narrow catheters exhibited at least 70% viability up to 7 days.ConclusionsThe catheter-injectable gelatin-alginate hydrogel represents a new concept, which combines tissue engineering with minimal invasive procedure. It is an inexpensive and convenient to use alternative to other types of suggested scaffolds for lung tissue engineering. This novel concept may be used for additional clinical applications in regenerative medicine.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…