• Neurobiology of disease · Feb 2015

    Neurogenesis is enhanced by stroke in multiple new stem cell niches along the ventricular system at sites of high BBB permeability.

    • Ruihe Lin, Jingli Cai, Cody Nathan, Xiaotao Wei, Stephanie Schleidt, Robert Rosenwasser, and Lorraine Iacovitti.
    • Farber Institute of Neurosciences, Department of Neuroscience, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
    • Neurobiol. Dis. 2015 Feb 1; 74: 229-39.

    AbstractPrevious studies have established the subventricular (SVZ) and subgranular (SGZ) zones as sites of neurogenesis in the adult forebrain (Doetsch et al., 1999a; Doetsch, 2003a). Work from our laboratory further indicated that midline structures known as circumventricular organs (CVOs) also serve as adult neural stem cell (NSC) niches (Bennett et al., 2009, 2010). In the quiescent rat brain, NSC proliferation remains low in all of these sites. Therefore, we recently examined whether ischemic stroke injury (MCAO) or sustained intraventricular infusion of the mitogen bFGF could trigger an up-regulation in NSC proliferation, inducing neurogenesis and gliogenesis. Our data show that both stroke and bFGF induce a dramatic and long-lasting (14day) rise in the proliferation (BrdU+) of nestin+Sox2+GFAP+ NSCs capable of differentiating into Olig2+ glial progenitors, GFAP+nestin-astrocyte progenitors and Dcx+ neurons in the SVZ and CVOs. Moreover, because of the upsurge in NSC number, it was possible to detect for the first time several novel stem cell niches along the third (3V) and fourth (4V) ventricles. Importantly, a common feature of all brain niches was a rich vasculature with a blood-brain-barrier (BBB) that was highly permeable to systemically injected sodium fluorescein. These data indicate that stem cell niches are more extensive than once believed and exist at multiple sites along the entire ventricular system, consistent with the potential for widespread neurogenesis and gliogenesis in the adult brain, particularly after injury. We further suggest that because of their leaky BBB, stem cell niches are well-positioned to respond to systemic injury-related cues which may be important for stem-cell mediated brain repair. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…