• Spine · Feb 1996

    Short-segment pedicle instrumentation. Biomechanical analysis of supplemental hook fixation.

    • M Chiba, R F McLain, S A Yerby, T A Moseley, T S Smith, and D R Benson.
    • Department of Orthopaedic Surgery, Tokai University, Kanagawa, Japan.
    • Spine. 1996 Feb 1; 21 (3): 288-94.

    Study DesignThis biomechanical study of fractures in cadaver vertebrae used specially designed pedicle screws to determine screw strains during loading of two different fixation constructs.ObjectivesThe authors determined the relative benefit of adding offset sublaminar hooks to standard pedicle screw constructs to reduce screw bending moments and prevent fixation failure and sagittal collapse.Summary Of Background DataClinical studies have demonstrated a high incidence of early screw failure in short-segment pedicle instrumentation constructs used to treat unstable burst fractures. Strategies to prevent early construct failure include longer constructs, anterior strut graft reconstruction, and use of offset sublaminar hooks at the ends of standard short-segment pedicle instrumentation constructs.MethodsHuman cadaver spines with an L1 burst fracture were instrumented with a standard short-segment pedicle instrumentation construct using specially instrumented pedicle screws. Mechanical testing was carried out in flexion, extension, side bending, and torsion, and stiffness and screw bending moments were recorded. Offset hooks were applied initially, then removed and testing repeated. Stiffness data were compared to intact and postfracture results, and between augmented and standard constructs.ResultsAddition of offset laminar hooks, supralaminar at T11 and infralaminar at L2, to standard short-segment pedicle instrumentation constructs increased stiffness in flexion by 268%, in extension by 223%, in side bending by 161%, and in torsion by 155% (all were significant except torsion). Sublaminar hooks also reduced pedicle screw bending moments to roughly 50% of standard in both flexion and extension (P < 0.05).ConclusionsSupplemental offset hooks significantly increase construct stiffness without sacrificing principles of short-segment pedicle instrumentation, and absorb some part of the construct strain, thereby reducing pedicle screw bending moments and the likelihood of postyield deformation and clinical failure.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.