-
- Yinxiaohe Sun, Vanessa Koh, Kalisvar Marimuthu, Oon Tek Ng, Barnaby Young, Shawn Vasoo, Monica Chan, Vernon J M Lee, Partha P De, Timothy Barkham, Lin Raymond T P RTP Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore. , Alex R Cook, Yee Sin Leo, and National Centre for Infectious Diseases COVID-19 Outbreak Research Team.
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.
- Clin. Infect. Dis. 2020 Jul 28; 71 (15): 786-792.
BackgroundRapid identification of COVID-19 cases, which is crucial to outbreak containment efforts, is challenging due to the lack of pathognomonic symptoms and in settings with limited capacity for specialized nucleic acid-based reverse transcription polymerase chain reaction (PCR) testing.MethodsThis retrospective case-control study involves subjects (7-98 years) presenting at the designated national outbreak screening center and tertiary care hospital in Singapore for SARS-CoV-2 testing from 26 January to 16 February 2020. COVID-19 status was confirmed by PCR testing of sputum, nasopharyngeal swabs, or throat swabs. Demographic, clinical, laboratory, and exposure-risk variables ascertainable at presentation were analyzed to develop an algorithm for estimating the risk of COVID-19. Model development used Akaike's information criterion in a stepwise fashion to build logistic regression models, which were then translated into prediction scores. Performance was measured using receiver operating characteristic curves, adjusting for overconfidence using leave-one-out cross-validation.ResultsThe study population included 788 subjects, of whom 54 (6.9%) were SARS-CoV-2 positive and 734 (93.1%) were SARS-CoV-2 negative. The median age was 34 years, and 407 (51.7%) were female. Using leave-one-out cross-validation, all the models incorporating clinical tests (models 1, 2, and 3) performed well with areas under the receiver operating characteristic curve (AUCs) of 0.91, 0.88, and 0.88, respectively. In comparison, model 4 had an AUC of 0.65.ConclusionsRapidly ascertainable clinical and laboratory data could identify individuals at high risk of COVID-19 and enable prioritization of PCR testing and containment efforts. Basic laboratory test results were crucial to prediction models.© The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.