• Neurotoxicity research · Nov 2005

    Comparative Study

    Pro- and anti-inflammatory cytokines regulate the ERK pathway: implication of the timing for the activation of microglial cells.

    • K Saud, R Herrera-Molina, and R Von Bernhardi.
    • Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile.
    • Neurotox Res. 2005 Nov 1; 8 (3-4): 277-87.

    AbstractPro-inflammatory molecules induce glial activation and the release of potentially detrimental factors capable of generating oxidative damage, such as nitric oxide (NO) and superoxide anion (O2.-). Activated glial cells (astrocytes and microglia) are associated to the inflammatory process in neurodegenerative diseases. A strong inflammatory response could escape endogenous control becoming toxic to neurons and contributing to the course of the disease. We evaluated in a hippocampal cells-microglia co-culture model, if the pro-inflammatory condition induced by lipopolysaccharide + interferon-gamma (LPS+IFN-gamma) promoted damage directly or if damage was secondary to glial activation. In addition, we explored the effect of the anti-inflammatory cytokine transforming growth factor-beta1 (TGF-beta1), and pro-inflammatory cytokines, interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) on the regulation of the inflammatory response of microglia. We found that LPS+IFN-gamma-induced damage on hippocampal cultures was dependent on the presence of microglial cells. In hippocampal cultures exposed to LPS+IFN-gamma, TGF-beta1 was induced whereas in microglial cell cultures LPS+IFN-gamma induced the secretion of IL-1beta. TGF-beta1 and IL-1beta but not TNF-alpha decreased the NO production by 70-90%. PD98059, an inhibitor of MAP kinase (MEK), reduced the IFN-gamma-induced NO production by 40%. TGF-beta and IL-1beta reduced the IFN-gamma induced phosphorylation of ERK1,2 by 60% and 40%, respectively. However, the effect of IL-1beta was observed at 30 min and that of TGF-beta1 only after 24 h of exposure. We propose that acting with different timing, TGF-beta1 and IL-1beta can modulate the extracellular signal-regulated kinase ERK1,2, as a common element for different transduction pathways, regulating the amplitude and duration of glial activation in response to LPS+IFN-gamma. Cross-talk among brain cells may be key for the understanding of inflammatory mechanisms involved in pathogenesis of neurodegenerative diseases.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.