• S. Afr. Med. J. · Oct 2020

    The effect of lockdown regulations on SARS-CoV-2 infectivity in Gauteng Province, South Africa.

    • J Pillai, P Motloba, K S C Motaung, L U Ozougwu, B K Ikalafeng, E Marinda, M Lukhele, and D Basu.
    • Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. jaypvascular@gmail.com.
    • S. Afr. Med. J. 2020 Oct 28; 110 (11): 1119-1123.

    BackgroundOn 26 March 2020, the South African (SA) government initiated a 21-day national level 5 lockdown which was subsequently eased off and downgraded to level 4 on 1 May and to level 3 on 1 June. The effect of lockdown measures on SARS-CoV-2 infectivity is currently uncertain. In this article, we analyse the effects of the lockdown measures on the SARS-CoV-2 epidemic in one of the epicentres in SA.ObjectivesTo measure the effects of lockdown measures introduced in SA on SARS-CoV-2 attack rates (ARs, the percentage of individuals who tested positive in a specified time period) in Gauteng Province during a 4-month period (March - June 2020).MethodsIn this retrospective cohort study, we used a comprehensive database from an independent pathology laboratory in Gauteng. We analysed trends of positivity rates of reverse transcription polymerase chain reaction tests done during the 4-month period. The ARs are reported over time (unweighted and age-weighted 14-day moving averages) by age groups, gender, and different regions/districts in Gauteng.ResultsA total of 162 528 tests were performed at a private laboratory between 5 March and 30 June 2020, of which 20 574 were positive (overall AR 12.7%). These positive tests constituted 44.8% of all positive cases in the province (20 574/45 944). Sixty-two percent of all tests were done in June during lockdown level 3. There was an exponential increase in the AR in June (18.3%) when lockdown was eased to level 3, in comparison with 4.2% (March), 2.2% (April) and 3.3% (May). The increase in June was seen in all the age groups, although it was more pronounced in the 21 - 60 years age groups than the younger (0 - 20 years) and older (>60 years) age groups. The AR was significantly higher in males (13.2%) compared with females (12.1%) (χ2 test, p<0.0001).ConclusionsThe findings of this study testify to the rapid increase in ARs resulting from easing of the lockdown regulations, especially to level 3 in June. Of concern is the upward trend in the AR across all age groups, especially <20 years (15.9%), which was not reported in other parts of the world. Population age dynamics should therefore be considered when taking future decisions about lockdown regulations.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…