• J Arthroplasty · Oct 2019

    Use of Natural Language Processing Tools to Identify and Classify Periprosthetic Femur Fractures.

    • Meagan E Tibbo, Cody C Wyles, Sunyang Fu, Sunghwan Sohn, David G Lewallen, Daniel J Berry, and Hilal Maradit Kremers.
    • Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN.
    • J Arthroplasty. 2019 Oct 1; 34 (10): 2216-2219.

    BackgroundManual chart review is labor-intensive and requires specialized knowledge possessed by highly trained medical professionals. The cost and infrastructure challenges required to implement this is prohibitive for most hospitals. Natural language processing (NLP) tools are distinctive in their ability to extract critical information from unstructured text in the electronic health records. As a simple proof-of-concept for the potential application of NLP technology in total hip arthroplasty (THA), we examined its ability to identify periprosthetic femur fractures (PPFFx) followed by more complex Vancouver classification.MethodsPPFFx were identified among all THAs performed at a single academic institution between 1998 and 2016. A randomly selected training cohort (1538 THAs with 89 PPFFx cases) was used to develop the prototype NLP algorithm and an additional randomly selected cohort (2982 THAs with 84 PPFFx cases) was used to further validate the algorithm. Keywords to identify, and subsequently classify, Vancouver type PPFFx about THA were defined. The gold standard was confirmed by experienced orthopedic surgeons using chart and radiographic review. The algorithm was applied to consult and operative notes to evaluate language used by surgeons as a means to predict the correct pathology in the absence of a listed, precise diagnosis. Given the variability inherent to fracture descriptions by different surgeons, an iterative process was used to improve the algorithm during the training phase following error identification. Validation statistics were calculated using manual chart review as the gold standard.ResultsIn distinguishing PPFFx, the NLP algorithm demonstrated 100% sensitivity and 99.8% specificity. Among 84 PPFFx test cases, the algorithm demonstrated 78.6% sensitivity and 94.8% specificity in determining the correct Vancouver classification.ConclusionNLP-enabled algorithms are a promising alternative to manual chart review for identifying THA outcomes. NLP algorithms applied to surgeon notes demonstrated excellent accuracy in delineating PPFFx, but accuracy was low for Vancouver classification subtype. This proof-of-concept study supports the use of NLP technology to extract THA-specific data elements from the unstructured text in electronic health records in an expeditious and cost-effective manner.Level Of EvidenceLevel III.Copyright © 2019 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…