• World Neurosurg · Apr 2021

    Automated Lateral Ventricular and Cranial Vault Volume Measurements in 13,851 Subjects Utilizing Deep Learning Algorithms.

    • Georgios A Maragkos, Aristotelis S Filippidis, Sasank Chilamkurthy, Mohamed M Salem, Swetha Tanamala, Santiago Gomez-Paz, Pooja Rao, Justin M Moore, Efstathios Papavassiliou, David Hackney, and Ajith J Thomas.
    • Neurosurgery Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
    • World Neurosurg. 2021 Apr 1; 148: e363-e373.

    BackgroundNo large dataset-derived standard has been established for normal or pathologic human cerebral ventricular and cranial vault volumes. Automated volumetric measurements could be used to assist in diagnosis and follow-up of hydrocephalus or craniofacial syndromes. In this work, we use deep learning algorithms to measure ventricular and cranial vault volumes in a large dataset of head computed tomography (CT) scans.MethodsA cross-sectional dataset comprising 13,851 CT scans was used to deploy U-Net deep learning networks to segment and quantify lateral cerebral ventricular and cranial vault volumes in relation to age and sex. The models were validated against manual segmentations. Corresponding radiologic reports were annotated using a rule-based natural language processing framework to identify normal scans, cerebral atrophy, or hydrocephalus.ResultsU-Net models had high fidelity to manual segmentations for lateral ventricular and cranial vault volume measurements (Dice index, 0.878 and 0.983, respectively). The natural language processing identified 6239 (44.7%) normal radiologic reports, 1827 (13.1%) with cerebral atrophy, and 1185 (8.5%) with hydrocephalus. Age-based and sex-based reference tables with medians, 25th and 75th percentiles for scans classified as normal, atrophy, and hydrocephalus were constructed. The median lateral ventricular volume in normal scans was significantly smaller compared with hydrocephalus (15.7 vs. 82.0 mL; P < 0.001).ConclusionsThis is the first study to measure lateral ventricular and cranial vault volumes in a large dataset, made possible with artificial intelligence. We provide a robust method to establish normal values for these volumes and a tool to report these on CT scans when evaluating for hydrocephalus.Copyright © 2021 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.