-
Cochrane Db Syst Rev · Jan 2020
Meta AnalysisInduction immunosuppression in adults undergoing liver transplantation: a network meta-analysis.
- Lawrence Mj Best, Jeffrey Leung, Suzanne C Freeman, Alex J Sutton, Nicola J Cooper, Elisabeth Jane Milne, Maxine Cowlin, Anna Payne, Dana Walshaw, Douglas Thorburn, Chavdar S Pavlov, Brian R Davidson, Emmanuel Tsochatzis, Norman R Williams, and Kurinchi Selvan Gurusamy.
- University College London, Division of Surgery and Interventional Science, Rowland Hill Street, London, UK, NW32PF.
- Cochrane Db Syst Rev. 2020 Jan 16; 1 (1): CD013203CD013203.
BackgroundLiver transplantation is considered the definitive treatment for people with liver failure. As part of post-liver transplantation management, immunosuppression (suppressing the host immunity) is given to prevent graft rejections. Immunosuppressive drugs can be classified into those that are used for a short period during the beginning phase of immunosuppression (induction immunosuppression) and those that are used over the entire lifetime of the individual (maintenance immunosuppression), because it is widely believed that graft rejections are more common during the first few months after liver transplantation. Some drugs such as glucocorticosteroids may be used for both induction and maintenance immunosuppression because of their multiple modalities of action. There is considerable uncertainty as to whether induction immunosuppression is necessary and if so, the relative efficacy of different immunosuppressive agents.ObjectivesTo assess the comparative benefits and harms of different induction immunosuppressive regimens in adults undergoing liver transplantation through a network meta-analysis and to generate rankings of the different induction immunosuppressive regimens according to their safety and efficacy.Search MethodsWe searched CENTRAL, MEDLINE, Embase, Science Citation Index Expanded, World Health Organization International Clinical Trials Registry Platform, and trials registers until July 2019 to identify randomised clinical trials in adults undergoing liver transplantation.Selection CriteriaWe included only randomised clinical trials (irrespective of language, blinding, or status) in adults undergoing liver transplantation. We excluded randomised clinical trials in which participants had multivisceral transplantation and those who already had graft rejections.Data Collection And AnalysisWe performed a network meta-analysis with OpenBUGS using Bayesian methods and calculated the odds ratio (OR), rate ratio, and hazard ratio (HR) with 95% credible intervals (CrIs) based on an available case analysis, according to National Institute of Health and Care Excellence Decision Support Unit guidance.Main ResultsWe included a total of 25 trials (3271 participants; 8 treatments) in the review. Twenty-three trials (3017 participants) were included in one or more outcomes in the review. The trials that provided the information included people undergoing primary liver transplantation for various indications and excluded those with HIV and those with renal impairment. The follow-up in the trials ranged from three to 76 months, with a median follow-up of 12 months among trials. All except one trial were at high risk of bias, and the overall certainty of evidence was very low. Overall, approximately 7.4% of people who received the standard regimen of glucocorticosteroid induction died and 12.2% developed graft failure. All-cause mortality and graft failure was lower with basiliximab compared with glucocorticosteroid induction: all-cause mortality (HR 0.53, 95% CrI 0.31 to 0.93; network estimate, based on 2 direct comparison trials (131 participants; low-certainty evidence)); and graft failure (HR 0.44, 95% CrI 0.28 to 0.70; direct estimate, based on 1 trial (47 participants; low-certainty evidence)). There was no evidence of differences in all-cause mortality and graft failure between other induction immunosuppressants and glucocorticosteroids in either the direct comparison or the network meta-analysis (very low-certainty evidence). There was also no evidence of differences in serious adverse events (proportion), serious adverse events (number), renal failure, any adverse events (proportion), any adverse events (number), liver retransplantation, graft rejections (any), or graft rejections (requiring treatment) between other induction immunosuppressants and glucocorticosteroids in either the direct comparison or the network meta-analysis (very low-certainty evidence). However, because of the wide CrIs, clinically important differences in these outcomes cannot be ruled out. None of the studies reported health-related quality of life.Fundingthe source of funding for 14 trials was drug companies who would benefit from the results of the study; two trials were funded by neutral organisations who have no vested interests in the results of the study; and the source of funding for the remaining nine trials was unclear. Based on low-certainty evidence, basiliximab induction may decrease mortality and graft failure compared to glucocorticosteroids induction in people undergoing liver transplantation. However, there is considerable uncertainty about this finding because this information is based on small trials at high risk of bias. The evidence is uncertain about the effects of different induction immunosuppressants on other clinical outcomes, including graft rejections. Future randomised clinical trials should be adequately powered, employ blinding, avoid post-randomisation dropouts (or perform intention-to-treat analysis), and use clinically important outcomes such as mortality, graft failure, and health-related quality of life.Copyright © 2020 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.