• Intensive Care Med Exp · Dec 2020

    Continuous external negative pressure improves oxygenation and respiratory mechanics in Experimental Lung Injury in Pigs - A pilot proof-of-concept trial.

    • Martin Scharffenberg, Jakob Wittenstein, Moritz Herzog, Sebastian Tauer, Luigi Vivona, Raphael Theilen, Thomas Bluth, Thomas Kiss, Thea Koch, Giuseppe Fiorentino, Marcelo Gama de Abreu, and Robert Huhle.
    • Pulmonary Engineering Group, Dept. of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
    • Intensive Care Med Exp. 2020 Dec 18; 8 (Suppl 1): 49.

    BackgroundContinuous external negative pressure (CENP) during positive pressure ventilation can recruit dependent lung regions. We hypothesised that CENP applied regionally to the thorax or the abdomen only, increases the caudal end-expiratory transpulmonary pressure depending on positive end-expiratory pressure (PEEP) in lung-injured pigs. Eight pigs were anesthetised and mechanically ventilated in the supine position. Pressure sensors were placed in the left pleural space, and a lung injury was induced by saline lung lavages. A CENP shell was placed at the abdomen and thorax (randomised order), and animals were ventilated with PEEP 15, 7 and zero cmH2O (15 min each). On each PEEP level, CENP of - 40, - 30, - 20, - 10 and 0 cmH2O was applied (3 min each). Respiratory and haemodynamic variables were recorded. Electrical impedance tomography allowed assessment of centre of ventilation.ResultsCompared to positive pressure ventilation alone, the caudal transpulmonary pressure was significantly increased by CENP of ≤ 20 cmH2O at all PEEP levels. CENP of - 20 cmH2O reduced the mean airway pressure at zero PEEP (P = 0.025). The driving pressure decreased at CENP of ≤ 10 at PEEP of 0 and 7 cmH2O (P < 0.001 each) but increased at CENP of - 30 cmH2O during the highest PEEP (P = 0.001). CENP of - 30 cmH2O reduced the mechanical power during zero PEEP (P < 0.001). Both elastance (P < 0.001) and resistance (P < 0.001) were decreased at CENP ≤ 30 at PEEP of 0 and 7 cmH2O. Oxygenation increased at CENP of ≤ 20 at PEEP of 0 and 7 cmH2O (P < 0.001 each). Applying external negative pressure significantly shifted the centre of aeration towards dorsal lung regions irrespectively of the PEEP level. Cardiac output decreased significantly at CENP -20 cmH2O at all PEEP levels (P < 0.001). Effects on caudal transpulmonary pressure, elastance and cardiac output were more pronounced when CENP was applied to the abdomen compared with the thorax.ConclusionsIn this lung injury model in pigs, CENP increased the end-expiratory caudal transpulmonary pressure. This lead to a shift of lung aeration towards dependent zones as well as improved respiratory mechanics and oxygenation, especially when CENP was applied to the abdomen as compared to the thorax. CENP values ≤ 20 cmH2O impaired the haemodynamics.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.