• Pain · Sep 2011

    Comparative Study

    Spatiotemporal and anatomical analyses of P2X receptor-mediated neuronal and glial processing of sensory signals in the rat dorsal horn.

    • Ryoma Aoyama, Yasumasa Okada, Shigefumi Yokota, Yutaka Yasui, Kentaro Fukuda, Yoshio Shinozaki, Hideaki Yoshida, Masaya Nakamura, Kazuhiro Chiba, Fusao Kato, and Yoshiaki Toyama.
    • Department of Orthopaedic Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
    • Pain. 2011 Sep 1;152(9):2085-97.

    AbstractExtracellularly released adenosine triphosphate (ATP) modulates sensory signaling in the spinal cord. We analyzed the spatiotemporal profiles of P2X receptor-mediated neuronal and glial processing of sensory signals and the distribution of P2X receptor subunits in the rat dorsal horn. Voltage imaging of spinal cord slices revealed that extracellularly applied ATP (5-500 μM), which was degraded to adenosine and acting on P1 receptors, inhibited depolarizing signals and that it also enhanced long-lasting slow depolarization, which was potentiated after ATP was washed out. This post-ATP rebound potentiation was mediated by P2X receptors and was more prominent in the deep than in the superficial layer. Patch clamp recording of neurons in the superficial layer revealed long-lasting enhancement of depolarization by ATP through P2X receptors during the slow repolarization phase at a single neuron level. This depolarization pattern was different from that in voltage imaging, which reflects both neuronal and glial activities. By immunohistochemistry, P2X(1) and P2X(3) subunits were detected in neuropils in the superficial layer. The P2X(5) subunit was found in neuronal somata. The P2X(6) subunit was widely expressed in neuropils in the whole gray matter except for the dorsal superficial layer. Astrocytes expressed the P2X(7) subunit. These findings indicate that extracellular ATP is degraded into adenosine and prevents overexcitation of the sensory system, and that ATP acts on pre- and partly on postsynaptic neuronal P2X receptors and enhances synaptic transmission, predominantly in the deep layer. Astrocytes are involved in sensitization of sensory network activity more importantly in the superficial than in the deep layer.Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.