-
- Joel Campbell, Giuseppe Filardo, Benjamin Bruce, Sarvottam Bajaj, Nicole Friel, Arnavaz Hakimiyan, Stephen Wood, Robert Grumet, Sasha Shafikhani, Susan Chubinskaya, and Brian J Cole.
- Brian Cole, Department of Orthopedics, Anatomy and Cell Biology, Rush University Medical Center, 1611 West Harrison Avenue, Suite 300, Chicago, IL 60612, USA. bcole@rushortho.com.
- Am J Sports Med. 2014 Apr 1; 42 (4): 973-8.
BackgroundBecause chondrocyte viability is imperative for successful osteochondral allograft transplantation, sterilization techniques must provide antimicrobial effects with minimal cartilage toxicity. Chlorhexidine gluconate (CHG) is an effective disinfectant; however, its use with human articular cartilage requires further investigation.PurposeTo determine the maximal chlorhexidine concentration that does not affect chondrocyte viability in allografts and to determine whether this concentration effectively sterilizes contaminated osteoarticular grafts.Study DesignControlled laboratory study.MethodsOsteochondral plugs were subjected to pulse lavage with 1-L solutions of 0.002%, 0.01%, 0.05%, and 0.25% CHG and cultured for 0, 1, 2, and 7 days in media of 10% fetal bovine serum and antibiotics. Chondrocyte viability was determined via LIVE/DEAD Viability Assay. Plugs were contaminated with Staphylococcus aureus and randomized to 4 treatment groups. One group was not contaminated; the 3 others were contaminated and received no treatment, saline pulse lavage, or saline pulse lavage with 0.002% CHG. Serial dilutions were plated and colony-forming units assessed.ResultsThe control group and the 0.002% CHG group showed similar cell viability, ranging from 67% ± 4% to 81% ± 22% (mean ± SD) at all time points. In the 0.01% CHG group, cell viability was reduced in comparison with control by 2-fold at day 2 and remained until day 7 (P < .01). The 0.05% and 0.25% CHG groups showed a 2-fold reduction in cell viability at day 1 (P < .01). At day 7, cell viability was reduced to 15% ± 18% (4-fold decrease) for the 0.05% CHG group and 10% ± 19% (6-fold decrease) for the 0.25% CHG group (P < .01). Contaminated grafts treated with 0.002% CHG demonstrated no colony-forming units.ConclusionPulse lavage with 0.002% CHG does not cause significant cell death within 7 days after exposure, while CHG at concentrations >0.002% significantly decreases chondrocyte viability within 1 to 2 days after exposure and should therefore not be used for disinfection of osteochondral allograft. Pulse lavage does not affect chondrocyte viability but cannot be used in isolation to sterilize contaminated fragments. Overall, 0.002% CHG was shown to effectively decontaminate osteoarticular fragments.Clinical RelevanceThis study offers a scientific protocol for sterilizing osteochondral fragments that does not adversely affect cartilage viability.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.