• Spine · Apr 2014

    In vivo cervical facet joint capsule deformation during flexion-extension.

    • William J Anderst, William F Donaldson, Joon Y Lee, and James D Kang.
    • From the Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA.
    • Spine. 2014 Apr 15; 39 (8): E514-20.

    Study DesignNonrandomized controlled cohort.ObjectiveTo characterize subaxial cervical facet joint kinematics and facet joint capsule (FJC) deformation during in vivo, dynamic flexion-extension. To assess the effect of single-level anterior arthrodesis on adjacent segment FJC deformation.Summary Of Background DataThe cervical facet joint has been identified as the most common source of neck pain, and it is thought to play a role in chronic neck pain related to whiplash injury. Our current knowledge of cervical facet joint kinematics is based on cadaveric mechanical testing.MethodsFourteen asymptomatic controls and 9 C5-C6 arthrodesis patients performed full range of motion flexion-extension while biplane radiographs were collected at 30 Hz. A volumetric model-based tracking process determined 3-dimensional vertebral position with submillimeter accuracy. FJC fibers were modeled and grouped into anterior, lateral, posterior-lateral, posterior, and posterior-medial regions. FJC fiber deformations (total, shear, and compression-distraction) relative to the static position were determined for each cervical motion segment (C2-C3 through C6-C7) during flexion-extension.ResultsNo significant differences in the rate of fiber deformation in flexion were identified among motion segments (P = 0.159); however, significant differences were observed among fiber regions (P < 0.001). Significant differences in the rate of fiber deformation in extension were identified among motion segments (P < 0.001) and among fiber regions (P = 0.001). The rate of FJC deformation in extension adjacent to the arthrodesis was 45% less than that in corresponding motion segments in control subjects (P = 0.001).ConclusionIn control subjects, FJC deformations are significantly different among vertebral levels and capsule regions when vertebrae are in an extended orientation. In a flexed orientation, FJC deformations are different only among capsule regions. Single-level anterior arthrodesis is associated with significantly less FJC deformation adjacent to the arthrodesis when the spine is in an extended orientation.Level Of Evidence4.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…