• Infect Dis Poverty · Aug 2020

    Observational Study

    Abnormal immunity of non-survivors with COVID-19: predictors for mortality.

    • Yang Zhao, Han-Xiang Nie, Ke Hu, Xiao-Jun Wu, Yun-Ting Zhang, Meng-Mei Wang, Tao Wang, Zhi-Shui Zheng, Xiao-Chen Li, and Shao-Lin Zeng.
    • Department of Respiratory Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China. zhaoyangrm@whu.edu.cn.
    • Infect Dis Poverty. 2020 Aug 3; 9 (1): 108.

    BackgroundThe number of coronavirus disease 2019 (COVID-19) cases has rapidly increased all over the world. Specific information about immunity in non-survivors with COVID-19 is scarce. This study aimed to analyse the clinical characteristics and abnormal immunity of the confirmed COVID-19 non-survivors.MethodsIn this single-centered, retrospective, observational study, we enrolled 125 patients with COVID-19 who were died between January 13 and March 4, 2020 in Renmin Hospital of Wuhan University. A total of 414 randomly recruited patients with confirmed COVID-19 who were discharged from the same hospital during the same period served as control. The demographic, clinical characteristics and laboratory findings at admission, and treatment used in these patients were collected. The immunity-related risk factors associated with in-hospital death were tested by logistic regression models and Receiver Operating Characteristic (ROC) curve.ResultsNon-survivors (70 years, IQR: 61.5-80) were significantly older than survivors (54 years, IQR: 37-65) (P <  0.001). 56.8% of non-survivors was male. Nearly half of the patients (44.9%) had chronic medical illness. In non-survivors, hypertension (49.6%) was the most common comorbidity, followed by diabetes (20.0%) and coronary heart disease (16.0%). The common signs and symptoms at admission of non-survivors were fever (88%), followed by cough (64.8%), dyspnea (62.4%), fatigue (62.4%) and chest tightness (58.4%). Compared with survivors, non-survivors had higher white blood cell (WBC) count (7.85 vs 5.07 × 109/L), more elevated neutrophil count (6.41 vs 3.08 × 109/L), smaller lymphocyte count (0.69 vs 1.20 × 109/L) and lower platelet count (172 vs 211 × 109/L), raised concentrations of procalcitonin (0.21 vs 0.06 ng/mL) and CRP (70.5 vs 7.2 mg/L) (P < 0.001). This was accompanied with significantly decreased levels of CD3+ T cells (277 vs 814 cells/μl), CD4+ T cells (172 vs 473 cells/μl), CD8+ T cells (84 vs 262.5 cells/μl, P < 0.001), CD19+ T cells (88 vs 141 cells/μl) and CD16+ 56+ T cells (79 vs 128.5 cells/μl) (P < 0.001). The concentrations of immunoglobulins (Ig) G (13.30 vs 11.95 g/L), IgA (2.54 vs 2.21 g/L), and IgE (71.30 vs 42.25 IU/ml) were increased, whereas the levels of complement proteins (C)3 (0.89 vs 0.99 g/L) and C4 (0.22 vs 0.24 g/L) were decreased in non-survivors when compared with survivors (all P < 0.05). The non-survivors presented lower levels of oximetry saturation (90 vs 97%) at rest and lactate (2.40 vs 1.90 mmol/L) (P < 0.001). Old age, comorbidity of malignant tumor, neutrophilia, lymphocytopenia, low CD4+ T cells, decreased C3, and low oximetry saturation were the risk factors of death in patients with confirmed COVID-19. The frequency of CD4+ T cells positively correlated with the numbers of lymphocytes (r = 0.787) and the level of oximetry saturation (r = 0.295), Whereas CD4+ T cells were negatively correlated with age (r =-0.323) and the numbers of neutrophils (r = - 0.244) (all P < 0.001).ConclusionsAbnormal cellular immunity and humoral immunity were key features of non-survivors with COVID-19. Neutrophilia, lymphocytopenia, low CD4+ T cells, and decreased C3 were immunity-related risk factors predicting mortality of patients with COVID-19.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.