• Epidemiology · Jul 2020

    Estimating the Size of a COVID-19 Epidemic from Surveillance Systems.

    • Mu Yue, Hannah E Clapham, and Alex R Cook.
    • From the Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.
    • Epidemiology. 2020 Jul 1; 31 (4): 567-569.

    AbstractPublic health policy makers in countries with Coronavirus Disease 2019 (COVID-19) outbreaks face the decision of when to switch from measures that seek to contain and eliminate the outbreak to those designed to mitigate its effects. Estimates of epidemic size are complicated by surveillance systems that cannot capture all cases, and by the need for timely estimates as the epidemic is ongoing. This article provides a Bayesian methodology to estimate outbreak size from one or more surveillance systems such as virologic testing of pneumonia cases or samples from a network of general practitioners.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…