-
- Jonathan Stokes, Bruce Guthrie, Stewart W Mercer, Nigel Rice, and Matt Sutton.
- Centre for Primary Care and Health Services Research, University of Manchester, Manchester, United Kingdom.
- PLoS Med. 2021 Jan 1; 18 (1): e1003514e1003514.
BackgroundPatients with multimorbidities have the greatest healthcare needs and generate the highest expenditure in the health system. There is an increasing focus on identifying specific disease combinations for addressing poor outcomes. Existing research has identified a small number of prevalent "clusters" in the general population, but the limited number examined might oversimplify the problem and these may not be the ones associated with important outcomes. Combinations with the highest (potentially preventable) secondary care costs may reveal priority targets for intervention or prevention. We aimed to examine the potential of defining multimorbidity clusters for impacting secondary care costs.Methods And FindingsWe used national, Hospital Episode Statistics, data from all hospital admissions in England from 2017/2018 (cohort of over 8 million patients) and defined multimorbidity based on ICD-10 codes for 28 chronic conditions (we backfilled conditions from 2009/2010 to address potential undercoding). We identified the combinations of multimorbidity which contributed to the highest total current and previous 5-year costs of secondary care and costs of potentially preventable emergency hospital admissions in aggregate and per patient. We examined the distribution of costs across unique disease combinations to test the potential of the cluster approach for targeting interventions at high costs. We then estimated the overlap between the unique combinations to test potential of the cluster approach for targeting prevention of accumulated disease. We examined variability in the ranks and distributions across age (over/under 65) and deprivation (area level, deciles) subgroups and sensitivity to considering a smaller number of diseases. There were 8,440,133 unique patients in our sample, over 4 million (53.1%) were female, and over 3 million (37.7%) were aged over 65 years. No clear "high cost" combinations of multimorbidity emerged as possible targets for intervention. Over 2 million (31.6%) patients had 63,124 unique combinations of multimorbidity, each contributing a small fraction (maximum 3.2%) to current-year or 5-year secondary care costs. Highest total cost combinations tended to have fewer conditions (dyads/triads, most including hypertension) affecting a relatively large population. This contrasted with the combinations that generated the highest cost for individual patients, which were complex sets of many (6+) conditions affecting fewer persons. However, all combinations containing chronic kidney disease and hypertension, or diabetes and hypertension, made up a significant proportion of total secondary care costs, and all combinations containing chronic heart failure, chronic kidney disease, and hypertension had the highest proportion of preventable emergency admission costs, which might offer priority targets for prevention of disease accumulation. The results varied little between age and deprivation subgroups and sensitivity analyses. Key limitations include availability of data only from hospitals and reliance on hospital coding of health conditions.ConclusionsOur findings indicate that there are no clear multimorbidity combinations for a cluster-targeted intervention approach to reduce secondary care costs. The role of risk-stratification and focus on individual high-cost patients with interventions is particularly questionable for this aim. However, if aetiology is favourable for preventing further disease, the cluster approach might be useful for targeting disease prevention efforts with potential for cost-savings in secondary care.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.