-
- David S Lindberg, Mattia Prosperi, Ragnhildur I Bjarnadottir, Jaime Thomas, Marsha Crane, Zhaoyi Chen, Kristen Shear, Laurence M Solberg, Urszula Alina Snigurska, Yonghui Wu, Yunpeng Xia, and Robert J Lucero.
- Department of Statistics, College of Liberal Arts and Sciences, University of Florida, United States. Electronic address: dlindberg@ufl.edu.
- Int J Med Inform. 2020 Nov 1; 143: 104272.
BackgroundInpatient falls, many resulting in injury or death, are a serious problem in hospital settings. Existing falls risk assessment tools, such as the Morse Fall Scale, give a risk score based on a set of factors, but don't necessarily signal which factors are most important for predicting falls. Artificial intelligence (AI) methods provide an opportunity to improve predictive performance while also identifying the most important risk factors associated with hospital-acquired falls. We can glean insight into these risk factors by applying classification tree, bagging, random forest, and adaptive boosting methods applied to Electronic Health Record (EHR) data.ObjectiveThe purpose of this study was to use tree-based machine learning methods to determine the most important predictors of inpatient falls, while also validating each via cross-validation.Materials And MethodsA case-control study was designed using EHR and electronic administrative data collected between January 1, 2013 to October 31, 2013 in 14 medical surgical units. The data contained 38 predictor variables which comprised of patient characteristics, admission information, assessment information, clinical data, and organizational characteristics. Classification tree, bagging, random forest, and adaptive boosting methods were used to identify the most important factors of inpatient fall-risk through variable importance measures. Sensitivity, specificity, and area under the ROC curve were computed via ten-fold cross validation and compared via pairwise t-tests. These methods were also compared to a univariate logistic regression of the Morse Fall Scale total score.ResultsIn terms of AUROC, bagging (0.89), random forest (0.90), and boosting (0.89) all outperformed the Morse Fall Scale (0.86) and the classification tree (0.85), but no differences were measured between bagging, random forest, and adaptive boosting, at a p-value of 0.05. History of Falls, Age, Morse Fall Scale total score, quality of gait, unit type, mental status, and number of high fall risk increasing drugs (FRIDs) were considered the most important features for predicting inpatient fall risk.ConclusionsMachine learning methods have the potential to identify the most relevant and novel factors for the detection of hospitalized patients at risk of falling, which would improve the quality of patient care, and to more fully support healthcare provider and organizational leadership decision-making. Nurses would be able to enhance their judgement to caring for patients at risk for falls. Our study may also serve as a reference for the development of AI-based prediction models of other iatrogenic conditions. To our knowledge, this is the first study to report the importance of patient, clinical, and organizational features based on the use of AI approaches.Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.