-
Journal of neurotrauma · Jun 2021
White matter tract-oriented deformation is dependent on real-time axonal fiber orientation.
- Zhou Zhou, August G Domel, Xiaogai Li, Gerald Grant, Svein Kleiven, David Camarillo, and Michael Zeineh.
- Department of Bioengineering, Stanford University, Stanford, California, USA.
- J. Neurotrauma. 2021 Jun 15; 38 (12): 1730-1745.
AbstractTraumatic axonal injury (TAI) is a critical public health issue with its pathogenesis remaining largely elusive. Finite element (FE) head models are promising tools to bridge the gap between mechanical insult, localized brain response, and resultant injury. In particular, the FE-derived deformation along the direction of white matter (WM) tracts (i.e., tract-oriented strain) has been shown to be an appropriate predictor for TAI. The evolution of fiber orientation in time during the impact and its potential influence on the tract-oriented strain remains unknown, however. To address this question, the present study leveraged an embedded element approach to track real-time fiber orientation during impacts. A new scheme to calculate the tract-oriented strain was proposed by projecting the strain tensors from pre-computed simulations along the temporal fiber direction instead of its static counterpart directly obtained from diffuse tensor imaging. The results revealed that incorporating the real-time fiber orientation not only altered the direction but also amplified the magnitude of the tract-oriented strain, resulting in a generally more extended distribution and a larger volume ratio of WM exposed to high deformation along fiber tracts. These effects were exacerbated with the impact severities characterized by the acceleration magnitudes. Results of this study provide insights into how best to incorporate fiber orientation in head injury models and derive the WM tract-oriented deformation from computational simulations, which is important for furthering our understanding of the underlying mechanisms of TAI.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.