• Chest · May 2021

    Novel machine learning can predict acute asthma exacerbation.

    • Joe G Zein, Chao-Ping Wu, Amy H Attaway, Peng Zhang, and Aziz Nazha.
    • Respiratory Institute, Cleveland Clinic, Cleveland, OH; Lerner Research Institute, Cleveland Clinic, Cleveland, OH. Electronic address: zeinj@ccf.org.
    • Chest. 2021 May 1; 159 (5): 1747-1757.

    BackgroundAsthma exacerbations result in significant health and economic burden, but are difficult to predict.Research QuestionCan machine learning (ML) models with large-scale outpatient data predict asthma exacerbations?Study Design And MethodsWe analyzed data extracted from electronic health records (EHRs) of asthma patients treated at the Cleveland Clinic from 2010 through 2018. Demographic information, comorbidities, laboratory values, and asthma medications were included as covariates. Three different models were built with logistic regression, random forests, and a gradient boosting decision tree to predict: (1) nonsevere asthma exacerbation requiring oral glucocorticoid burst, (2) ED visits, and (3) hospitalizations.ResultsOf 60,302 patients, 19,772 (32.8%) had at least one nonsevere exacerbation requiring oral glucocorticoid burst, 1,748 (2.9%) requiring and ED visit and 902 (1.5%) requiring hospitalization. Nonsevere exacerbation, ED visit, and hospitalization were predicted best by light gradient boosting machine, an algorithm used in ML to fit predictive analytic models, and had an area under the receiver operating characteristic curve of 0.71 (95% CI, 0.70-0.72), 0.88 (95% CI, 0.86-0.89), and 0.85 (95% CI, 0.82-0.88), respectively. Risk factors for all three outcomes included age, long-acting β agonist, high-dose inhaled glucocorticoid, or chronic oral glucocorticoid therapy. In subgroup analysis of 9,448 patients with spirometry data, low FEV1 and FEV1 to FVC ratio were identified as top risk factors for asthma exacerbation, ED visits, and hospitalization. However, adding pulmonary function tests did not improve models' prediction performance.InterpretationModels built with an ML algorithm from real-world outpatient EHR data accurately predicted asthma exacerbation and can be incorporated into clinical decision tools to enhance outpatient care and to prevent adverse outcomes.Copyright © 2021 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…