• Neurosurgery · Apr 2021

    Machine Learning-Driven Metabolomic Evaluation of Cerebrospinal Fluid: Insights Into Poor Outcomes After Aneurysmal Subarachnoid Hemorrhage.

    • Matthew Koch, Animesh Acharjee, Zsuzsanna Ament, Riana Schleicher, Matthew Bevers, Christopher Stapleton, Aman Patel, and W Taylor Kimberly.
    • Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts.
    • Neurosurgery. 2021 Apr 15; 88 (5): 100310111003-1011.

    BackgroundAneurysmal subarachnoid hemorrhage (aSAH) is associated with a high mortality and poor neurologic outcomes. The biologic underpinnings of the morbidity and mortality associated with aSAH remain poorly understood.ObjectiveTo ascertain potential insights into pathological mechanisms of injury after aSAH using an approach of metabolomics coupled with machine learning methods.MethodsUsing cerebrospinal fluid (CSF) samples from 81 aSAH enrolled in a retrospective cohort biorepository, samples collected during the peak of delayed cerebral ischemia were analyzed using liquid chromatography-tandem mass spectrometry. A total of 138 metabolites were measured and quantified in each sample. Data were analyzed using elastic net (EN) machine learning and orthogonal partial least squares-discriminant analysis (OPLS-DA) to identify the leading CSF metabolites associated with poor outcome, as determined by the modified Rankin Scale (mRS) at discharge and at 90 d. Repeated measures analysis determined the effect size for each metabolite on poor outcome.ResultsEN machine learning and OPLS-DA analysis identified 8 and 10 metabolites, respectively, that predicted poor mRS (mRS 3-6) at discharge and at 90 d. Of these candidates, symmetric dimethylarginine (SDMA), dimethylguanidine valeric acid (DMGV), and ornithine were consistent markers, with an association with poor mRS at discharge (P = .0005, .002, and .0001, respectively) and at 90 d (P = .0036, .0001, and .004, respectively). SDMA also demonstrated a significantly elevated CSF concentration compared with nonaneurysmal subarachnoid hemorrhage controls (P = .0087).ConclusionSDMA, DMGV, and ornithine are vasoactive molecules linked to the nitric oxide pathway that predicts poor outcome after severe aSAH. Further study of dimethylarginine metabolites in brain injury after aSAH is warranted.© Congress of Neurological Surgeons 2021.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.