-
- James Williams, Michael Gustafson, Yu Bai, Samuel Prater, Charles E Wade, Oscar D Guillamondegui, Mansoor Khan, Megan Brenner, Paula Ferrada, Derek Roberts, Tal Horer, David Kauvar, Andrew Kirkpatrick, Carlos Ordonez, Bruno Perreira, Artai Priouzram, Juan Duchesne, and Bryan A Cotton.
- The Center for Translational Injury Research, The McGovern Medical School at the University of Texas Health Science Center, Houston, Texas.
- Shock. 2021 Dec 1; 56 (1S): 626962-69.
IntroductionExsanguination remains a leading cause of preventable death in traumatically injured patients. To better treat hemorrhagic shock, hospitals have adopted massive transfusion protocols (MTPs) which accelerate the delivery of blood products to patients. There has been an increase in mass casualty events (MCE) worldwide over the past two decades. These events can overwhelm a responding hospital's supply of blood products. Using a computerized model, this study investigated the ability of US trauma centers (TCs) to meet the blood product requirements of MCEs.MethodsCross-sectional survey data of on-hand blood products were collected from 16 US level-1 TCs. A discrete event simulation model of a TC was developed based on historic data of blood product consumption during MCEs. Each hospital's blood bank was evaluated across increasingly more demanding MCEs using modern MTPs to guide resuscitation efforts in massive transfusion (MT) patients.ResultsA total of 9,000 simulations were performed on each TC's data. Under the least demanding MCE scenario, the median size MCE in which TCs failed to adequately meet blood product demand was 50 patients (IQR 20-90), considering platelets. Ten TCs exhaust their supply of platelets prior to red blood cells (RBCs) or plasma. Disregarding platelets, five TCs exhausted their supply of O- packed RBCs, six exhausted their AB plasma supply, and five had a mixed exhaustion picture.ConclusionAssuming a TC's ability to treat patients is limited only by their supply of blood products, US level-1 TCs lack the on-hand blood products required to adequately treat patients following a MCE. Use of non-traditional blood products, which have a longer shelf life, may allow TCs to better meet the blood product requirement needs of patients following larger MCEs.Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the Shock Society.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.