• Biol Res Nurs · Jul 2019

    A Mechanistic Model of Gut-Brain Axis Perturbation and High-Fat Diet Pathways to Gut Microbiome Homeostatic Disruption, Systemic Inflammation, and Type 2 Diabetes.

    • Kelley Newlin Lew, Angela Starkweather, Xiaomei Cong, and Michelle Judge.
    • 1 School of Nursing, University of Connecticut, Storrs, CT, USA.
    • Biol Res Nurs. 2019 Jul 1; 21 (4): 384-399.

    AbstractType 2 diabetes (T2D) is a highly prevalent metabolic disease, affecting nearly 10% of the American population. Although the etiopathogenesis of T2D remains poorly understood, advances in DNA sequencing technologies have allowed for sophisticated interrogation of the human microbiome, providing insight into the role of the gut microbiome in the development and progression of T2D. An emerging body of research reveals that gut-brain axis (GBA) perturbations and a high-fat diet (HFD), along with other modifiable and nonmodifiable risk factors, contribute to gut microbiome homeostatic imbalance. Homeostatic imbalance or disruption increases gut wall permeability and facilitates translocation of endotoxins (lipopolysaccharides) into the circulation with resultant systemic inflammation. Chronic, low-grade systemic inflammation ensues with pro-inflammatory pathways activated, contributing to obesity, insulin resistance (IR), pancreatic β-cell decline, and, thereby, T2D. While GBA perturbations and HFD are implicated in provoking these conditions, prior mechanistic models have tended to examine HFD and GBA pathways exclusively without considering their shared pathways to T2D. Addressing this gap, this article proposes a mechanistic model informed by animal and human studies to advance scientific understanding of (1) modifiable and nonmodifiable risk factors for gut microbiome homeostatic disruption, (2) HFD and GBA pathways contributing to homeostatic disruption, and (3) shared GBA and HFD pro-inflammatory pathways to obesity, IR, β-cell decline, and T2D. The proposed mechanistic model, based on the extant literature, proposes a framework for studying the complex relationships of the gut microbiome to T2D to advance study in this promising area of research.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.