-
- Kiyotaka Nemoto, Hiromasa Sakaguchi, Wataru Kasai, Masatoshi Hotta, Ryotaro Kamei, Tomoyuki Noguchi, Ryogo Minamimoto, Tetsuaki Arai, and Takashi Asada.
- Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
- J Neuroimaging. 2021 May 1; 31 (3): 579-587.
Background And PurposeDementia with Lewy bodies (DLB) is the second most prevalent cause of degenerative dementia next to Alzheimer's disease (AD). Though current DLB diagnostic criteria employ several indicative biomarkers, relative preservation of the medial temporal lobe as revealed by structural MRI suffers from low sensitivity and specificity, making them unreliable as sole supporting biomarkers. In this study, we investigated how a deep learning approach would be able to differentiate DLB from AD with structural MRI data.MethodsTwo-hundred and eight patients (101 DLB, 69 AD, and 38 controls) participated in this retrospective study. Gray matter images were extracted using voxel-based morphometry (VBM). In order to compare the conventional statistical analysis with deep-learning feature extraction, we built a classification model for DLB and AD with a residual neural network (ResNet) type of convolutional neural network architecture, which is one of the deep learning models. The anatomically standardized gray matter images extracted in the same way as for the VBM process were used as inputs, and the classification performance achieved by our model was evaluated.ResultsConventional statistical analysis detected no significant atrophy other than fine differences on the middle temporal pole and hippocampal regions. The feature extracted by the deep learning method differentiated DLB from AD with 79.15% accuracy compared to the 68.41% of the conventional method.ConclusionsOur results confirmed that the deep learning method with gray matter images can detect fine differences between DLB and AD that may be underestimated by the conventional method.© 2021 American Society of Neuroimaging.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.