• Plos One · Jan 2013

    Comparison of prediction model for cardiovascular autonomic dysfunction using artificial neural network and logistic regression analysis.

    • Zi-Hui Tang, Juanmei Liu, Fangfang Zeng, Zhongtao Li, Xiaoling Yu, and Linuo Zhou.
    • Department of Endocrinology and Metabolism, Fudan University Huashan Hospital, Shanghai, China.
    • Plos One. 2013 Jan 1; 8 (8): e70571.

    BackgroundThis study aimed to develop the artificial neural network (ANN) and multivariable logistic regression (LR) analyses for prediction modeling of cardiovascular autonomic (CA) dysfunction in the general population, and compare the prediction models using the two approaches.Methods And MaterialsWe analyzed a previous dataset based on a Chinese population sample consisting of 2,092 individuals aged 30-80 years. The prediction models were derived from an exploratory set using ANN and LR analysis, and were tested in the validation set. Performances of these prediction models were then compared.ResultsUnivariate analysis indicated that 14 risk factors showed statistically significant association with the prevalence of CA dysfunction (P<0.05). The mean area under the receiver-operating curve was 0.758 (95% CI 0.724-0.793) for LR and 0.762 (95% CI 0.732-0.793) for ANN analysis, but noninferiority result was found (P<0.001). The similar results were found in comparisons of sensitivity, specificity, and predictive values in the prediction models between the LR and ANN analyses.ConclusionThe prediction models for CA dysfunction were developed using ANN and LR. ANN and LR are two effective tools for developing prediction models based on our dataset.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.