• Spine · Jun 2014

    Biomechanical evaluation of a low-profile, anchored cervical interbody spacer device at the index level or adjacent to plated fusion.

    • Ajay K Balaram, Alexander J Ghanayem, Patrick T OʼLeary, Leonard I Voronov, Robert M Havey, Gerard Carandang, Celeste Abjornson, and Avinash G Patwardhan.
    • *Department of Orthopaedic Surgery and Rehabilitation, Loyola University Medical Center, Maywood, IL †Musculoskeletal Biomechanics Laboratory, Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL; and ‡Synthes Spine, West Chester, PA.
    • Spine. 2014 Jun 1;39(13):E763-9.

    Study DesignIn vitro biomechanical study.ObjectiveTo test the hypotheses: (1) an anchored spacer device would decrease motion similarly to a plate-spacer construct, and (2) the anchored spacer would achieve a similar reduction in motion when placed adjacent to a previously fused segment.Summary Of Background DataAn anchored spacer device has been shown to perform similar to the plate-spacer construct in previous biomechanical evaluation. The prevalence of adjacent segment disease after fusion is well established in the literature.There is currently no evidence supporting the use of an anchored interbody spacer device adjacent to a previous fusion.MethodsEight human cervical spines (age: 45.1 ± 13.1 yr) were tested in moment control (±1.5 Nm) in flexion-extension, lateral bending, and axial rotation without preload. Flexion-extension was then retested under 150-N preload. Spines were tested intact and after anterior cervical discectomy and fusion (ACDF) at C4-C5 and C6-C7 with either a plate-spacer or anchored spacer construct (randomized). The specimens were tested finally with an ACDF at the floating C5-C6 segment using the anchored spacer device adjacent to the previous fusions.ResultsBoth the plate-spacer and anchored spacer significantly reduced motion from the intact spine in flexion-extension, lateral bending, and axial rotation (P < 0.005). There was no statistically significant difference between the 2 fusion constructs in their abilities to reduce motions (P = 1.0). ACDF using the anchored spacer at the floating C5-C6 level (in between the plate-spacer and anchored spacer constructs) resulted in significant motion reductions in all modes of testing (P < 0.05). These motion reductions did not significantly differ from those of a single-level anchored-spacer construct or a single-level plated ACDF.ConclusionThe anchored spacer provided significant motion reductions, similar to a plated ACDF, when used as a single-level fusion construct or placed adjacent to a previously plated segment.Level Of EvidenceN/A.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…