• Clinical biomechanics · May 2014

    Comparative Study

    Biomechanical behavior of MRI-signal-inducing bone cements after vertebroplasty in osteoporotic vertebral bodies: An experimental cadaver study.

    • Florian Wichlas, Heidi Trzenschik, Serafim Tsitsilonis, Antonius Rohlmann, and Hermann-Josef Bail.
    • Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
    • Clin Biomech (Bristol, Avon). 2014 May 1; 29 (5): 571-6.

    BackgroundConventional water-free polymethylmethacrylate cements are not MRI visible due to the lack of free protons. A new MRI-visible bone cement was developed through the addition of a contrast agent and either a saline solution or a hydroxyapatite (Wichlas et al., 2010). The purposes of the study were to examine the influence of the two MRI-signal-inducing cements on the biomechanical behavior of cadaveric osteoporotic vertebral bodies after vertebroplasty and to compare the performance of the cements with conventional polymethylmethacrylate cement.MethodsThree different cements were used: standard polymethylmethacrylate cement and two modified MRI-signal-inducing cements that were mixed with either a 0.9% saline solution or a hydroxyapatite. The modulus of elasticity for the standard polymethylmethacrylate cement was 2040MPa, and the moduli for the MRI-signal-inducing cements that were mixed with a 0.9% saline solution and a hydroxyapatite were 1477 and 1225MPa, respectively. The lumbar vertebral bodies from nine osteoporotic spines (mean age=87 years, range=78-99 years) of female cadavers were examined. Three groups were formed: polymethylmethacrylate cement with saline solution (n=14), polymethylmethacrylate cement with hydroxyapatite (n=12) and polymethylmethacrylate cement (n=13). The vertebral bodies were biomechanically tested before and after vertebroplasty. Stiffness was chosen as the primary biomechanical parameter.FindingsThe vertebral body stiffness was nearly two-fold greater after vertebroplasty, and this increase was statistically significant for every group. All the groups had similar vertebral body stiffness value before and after the vertebroplasty. The UNIANOVA test for multivariate analysis of variance showed no influence of lumbar level, injected cement volume and initial vertebral body stiffness.InterpretationThe elastic moduli of the cements appear to exert little influence on the biomechanical values when the cement is in the vertebral body. Based on the direct comparison with the classic polymethylmethacrylate cement, we believe that the implementation of such cements for MRI-guided vertebroplasties is feasible.Copyright © 2014 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…