-
J. Neurol. Neurosurg. Psychiatr. · Jan 2021
Computerised patient-specific prediction of the recovery profile of upper limb capacity within stroke services: the next step.
- Ruud W Selles, Eleni-Rosalina Andrinopoulou, Rinske H Nijland, Rick van der Vliet, Jorrit Slaman, Erwin Eh van Wegen, Dimitris Rizopoulos, Gerard M Ribbers, Carel Gm Meskers, and Gert Kwakkel.
- Rehabilitation Medicine & Plastic and Reconstructive Surgery, Erasmus MC - University Medical Center Rotterdam, Rotterdam, Netherlands r.selles@erasmusmc.nl.
- J. Neurol. Neurosurg. Psychiatr. 2021 Jan 21; 92 (6): 574581574-81.
IntroductionPredicting upper limb capacity recovery is important to set treatment goals, select therapies and plan discharge. We introduce a prediction model of the patient-specific profile of upper limb capacity recovery up to 6 months poststroke by incorporating all serially assessed clinical information from patients.MethodsModel input was recovery profile of 450 patients with a first-ever ischaemic hemispheric stroke measured using the Action Research Arm Test (ARAT). Subjects received at least three assessment sessions, starting within the first week until 6 months poststroke. We developed mixed-effects models that are able to deal with one or multiple measurements per subject, measured at non-fixed time points. The prediction accuracy of the different models was established by a fivefold cross-validation procedure.ResultsA model with only ARAT time course, finger extension and shoulder abduction performed as good as models with more covariates. For the final model, cross-validation prediction errors at 6 months poststroke decreased as the number of measurements per subject increased, from a median error of 8.4 points on the ARAT (Q1-Q3:1.7-28.1) when one measurement early poststroke was used, to 2.3 (Q1-Q3:1-7.2) for seven measurements. An online version of the recovery model was developed that can be linked to data acquisition environments.ConclusionOur innovative dynamic model can predict real-time, patient-specific upper limb capacity recovery profiles up to 6 months poststroke. The model can use all available serially assessed data in a flexible way, creating a prediction at any desired moment poststroke, stand-alone or linked with an electronic health record system.© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY. Published by BMJ.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.