• Military medicine · Jan 2021

    Vertebral Level-dependent Kinematics of Female and Male Necks Under G+x Loading.

    • Narayan Yoganandan, Jamie L Baisden, Jobin John, Gurunathan Saravana Kumar, Anjishnu Banerjee, and Hoon Choi.
    • Center for NeuroTrauma Research, Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
    • Mil Med. 2021 Jan 25; 186 (Suppl 1): 619-624.

    IntroductionSize-matched volunteer studies report gender-dependent variations in spine morphology, and head mass and inertia properties. The objective of this study was to determine the influence of these properties on upper and lower cervical spine temporal kinematics during G+x loading.MethodsParametrized three-dimensional head-neck finite element models were used, and impacts were applied at 1.8 and 2.6 m/s at the distal end. Details are given in the article. Contributions of population-based variations in morphological and mass-related variables on temporal kinematics were evaluated using sensitivity analysis. Influence of variations on time to maximum nonphysiological curve formation, and flexion of upper and extension of the lower spines were analyzed for male-like and female-like spines.ResultsUpper and lower spines responded with initial flexion and extension, resulting in a nonphysiological curve. Time to maximum nonphysiological curve and range of motions (ROMs) of the cervical column ranged from 45 to 66 ms, and 30 to 42 deg. Vertebral depth and location of the head center of gravity (cg) along anteroposterior axis were most influential variables for the upper spine flexion. Location of head cg along anteroposterior axis had the greatest influence on the time of the curve. Both anteroposterior and vertical locations of head cg, disc height, vertebral depth, head mass, and size were influential for the lower spine extension kinematics.ConclusionsModels with lesser vertebral depth, that is, female-like spines, experienced greater range of motions and pronounced nonphysiological curves. This results in greater distraction/stretch of the posterior upper spine complex, a phenomenon attributed to suboccipital headaches. Forward location of head cg along anteroposterior axis had the greatest influence on upper and lower spine motions and time of formation of the curve. Any increased anteroposterior location of cg attributable to head supported mass may induce greater risk of injuries/neck pain in women during G+x loading.Published by Oxford University Press on behalf of the Association of Military Surgeons of the United States 2021. This work is written by (a) US Government employee(s) and is in the public domain in the US.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.