• Military medicine · Jan 2021

    Neck Vertebral Level-specific Forces and Moments Under G-x Accelerative Loading.

    • Yuvaraj Purushothaman, John Humm, Davidson Jebaseelan, and Narayan Yoganandan.
    • Center for NeuroTrauma Research, Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
    • Mil Med. 2021 Jan 25; 186 (Suppl 1): 625-631.

    IntroductionIt is important to determine the local forces and moments across the entire cervical spine as dysfunctions such as spondylosis and acceleration-induced injuries are focused on specific levels/segments. The aims of the study were to determine the axial and shear forces and moments at each level under G-x accelerative loading for female and male spines.MethodsA three-dimensional finite element model of the male head-cervical spinal column was developed. G-x impact acceleration was applied using experimental data from whole body human cadaver tests. It was validated with experimental head kinematics. The model was converted to a female model, and the same input was applied. Segmental axial and shear forces and moments were obtained at all levels from C2 to T1 in male and female spines.ResultsThe time of occurrence of peak axial forces in male and female spines ranged from 37 to 41 ms and 31 to 35 ms. The peak times for the shear forces in male and female spines ranged from 65 to 86 ms and 58 to 78 ms. The peak times for the bending moment ranged from 79 to 91 ms for male and 75 to 83 ms for female spines. Other data are given.ConclusionsAll metrics reached their peaks earlier in female than male spines, representing a quicker loading in the female spine. Peak magnitudes were also lower in the female spines. Moments and axial forces varied differently compared to the shear forces in the female spine, suggesting that intersegmental loads vary nonuniformly. Effects of head inertia contributed to the greatest increase in axial force under this impact acceleration vector. Because female spines have a lower biomechanical tolerance to injury, female spines may be more vulnerable to injury under this load vector.© The Association of Military Surgeons of the United States 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.