-
- Christopher Nemeth, Adam Amos-Binks, Christie Burris, Natalie Keeney, Yuliya Pinevich, Brian W Pickering, Gregory Rule, Dawn Laufersweiler, Vitaly Herasevich, and Mei G Sun.
- Applied Research Associates, Albuquerque, NM 87110, USA.
- Mil Med. 2021 Jan 25; 186 (Suppl 1): 273-280.
IntroductionThe emergence of more complex Prolonged Field Care in austere settings and the need to assist inexperienced providers' ability to treat patients create an urgent need for effective tools to support care. We report on a project to develop a phone-/tablet-based decision support system for prehospital tactical combat casualty care that collects physiologic and other clinical data and uses machine learning to detect and differentiate shock manifestation.Materials And MethodsSoftware interface development methods included literature review, rapid prototyping, and subject matter expert design requirements reviews. Machine learning algorithm methods included development of a model trained on publicly available Medical Information Mart for Intensive Care data, then on de-identified data from Mayo Clinic Intensive Care Unit.ResultsThe project team interviewed 17 Army, Air Force, and Navy medical subject matter experts during design requirements review sessions. They had an average of 17 years of service in military medicine and an average of 4 deployments apiece and all had performed tactical combat casualty care on live patients during deployment. Comments provided requirements for shock identification and management in prehospital settings, including support for indication of shock probability and shock differentiation. The machine learning algorithm based on logistic regression performed best among other algorithms we tested and was able to predict shock onset 90 minutes before it occurred with better than 75% accuracy in the test dataset.ConclusionsWe expect the Trauma Triage, Treatment, and Training Decision Support system will augment a medic's ability to make informed decisions based on salient patient data and to diagnose multiple types of shock through remotely trained, field deployed ML models.© The Association of Military Surgeons of the United States 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.